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Tock: embedded operating system
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•Key design goals
1. Safety
2. Security
3. Multiprogrammability

•Targets microcontrollers
• Ex: Cortex-M, RISC-V 32 bit
• 16-256kB RAM, 256kB-1MB code
•No virtual memory

• Industry buy-in
• Google OpenTitan, 

OpenSK
• Microsoft
• HPE
• Infineon
• OxidOS Automotive

https://opentitan.org/
https://security.googleblog.com/2020/01/say-hello-to-opensk-fully-open-source.html


Overview

•Tock Operating System
•What is it?
• Tock Threat Model
•Dynamic Memory Allocation
• Processes and Updates

•Features in-the-works
• Emerging use cases

•Community
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Tock OS architecture
• Tock: new OS for IoT emphasizing safety and reliability

• Written in the Rust programming language (emphasizes safety and robustness)

• Individual processes are “sandboxed”
• Cannot access or affect any other process
• If a process is buggy or malicious it does not compromise the entire system
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Kernel written entirely in Rust
• Rust: type- and memory-safe systems language

• Types enforced by compiler: no buffer overflows, null dereferences, or arbitrary memory 
accesses

• Fast: statically compiled, within 30% performance with C
• No garbage collection, all memory lifetimes tracked

• …but low-level OS code is fundamentally memory-unsafe
• Memory-mapped I/O
• Interrupts
• Context switches
• System calls

• Rust provides the unsafe keyword as an escape hatch
• Disables certain (not all) compiler checks
• Additional language features allowed (e.g. dereferencing pointers)
• Tock very explicit about where unsafe is used
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Support for 30+ boards
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Architectural trust layers

• Applications
• Completely untrusted
• Isolated using MPU

•Capsules
• Untrusted
• In Rust, no unsafe

•Core Kernel & Drivers
• Trusted
• Limited unsafe
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Tock Threat Model
• Formal Definition of what the kernel guarantees
• Isolation Provided to Processes

• Confidentiality: A process' data may not be accessed by other processes or 
by capsules, unless explicitly permitted by the process.

• Integrity: Process data may not be modified by other processes or by 
capsules, except when allowed by the process.

• Availability: Processes may not deny service to each other at runtime.
• Isolation Provided to Kernel Code

• Confidentiality: Kernel data may not be accessed by processes or 
capsules, except where explicitly permitted by the owning component.

• Integrity: Processes and capsules may not modify kernel data except 
through APIs intentionally exposed by the owning code.

• Availability: Processes cannot starve the kernel of resources or otherwise 
perform denial-of-service attacks against the kernel.

• Implementing these guarantees
• Rust compiler
• Hardware memory protection
• Application format
• Software capabilities
• Code review and software architecture

• More detail: https://book.tockos.org/doc/threat_model/threat_model
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Challenge: ensuring reliability with limited resources

• Dynamic applications can lead to resource exhaustion in the kernel
• What happens when malloc() fails inside the kernel?!?

• Crash??
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Dynamic allocation in the kernel is OK for a while…
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App 1 App 2
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Process format and credentials in TockOS

• Each Tock process is in
Tock Binary Format (TBF)

• TBF Header
• Process Binary

• Actual instructions and data for the 
process (compiled from any language)

• TBF Footer
• List of credentials for the process
• Ex: hash, HMAC, signature
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Processes can be updated individually

Core kernel workflow:
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Panic-free code: Converting runtime checks 
to compile-time checks
•Simple example: what happens if:
 uint8_t buffer[10];
 x = buffer[15];

•C: memory bug
•Rust: system panic
•Crowdstrike failure shows the downsides of kernel 
panics!
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Let the compiler reason about where 
crashes can happen
•Unrecoverable errors become abort()

• At compile time, verify the compiler did not insert any panic() 
calls
• Parse the generated ELF or LLVM IR
• Fail if panic() is present 
• Panic is how rust signals a runtime error

• Better than a security vulnerability
• Still results in a security crash

•Use alternatives to avoid panic() calls
• Eg: replace buffer[15] with buffer.get(15).unwrap_or(0)
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Growing Community around Tock

• Tock World 7 Meeting – June 26-28, 2024
• Meeting of users from academia and industry

• Held at UCSD
• Three-day workshop

• Developers day
• Community day
• Tutorial day

• Shared progress on secure app updates
• Establishing a foundation to steward Tock
• Tutorials & Documentation
• book.tockos.org

•Open-source project
• github.com/tock/tock

21

http://tockos.org



Thank you! Questions?

• Tutorials & Documentation
• book.tockos.org

•Open-source project
• github.com/tock/tock
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