it UVA ENGINEERING 1

UNIVERSITY

LINK LAB VIRGINTA

Tock: A Safe and Secure Operating System
for Root-of-Trust Hardware

Zero Trust Hardware Architectures Workshop (ZTHA)
September 4, 2024
Brad Campbell — bradjc@virginia.edu
http://www.cs.virginia.edu/~bjc8c/

-

Al
U IVERSITY

IRGINIA

AMD Ryzen Al 300

Chromebook

Tock: embedded operating system U a8

IRGINIA

» Key design goals

1. Safety T@ : c k

2. Security
3. Multiprogrammability

 Targets microcontrollers * Industry buy-in
+ Ex: Cortex-M, RISC-V 32 bit " googie pentian,
* 16-256kB RAM, 256kB-1MB code Microsoft
* No virtual memory * HPE
* Infineon

* OxidOS Automotive

®8 .. ON :

https://opentitan.org/
https://security.googleblog.com/2020/01/say-hello-to-opensk-fully-open-source.html

Ove I'Vl ew U I\ET%ESITY

7VIRGINIA

* Tock Operating System
* What is it?
 Tock Threat Model
* Dynamic Memory Allocation
* Processes and Updates

 Features in-the-works
* Emerging use cases

« Community

Tock OS architecture To:ck ygem

IRGINIA

 Tock: new OS for IoT emphasizing safety and reliability
« Written in the Rust programming language (emphasizes safety and robustness)
* Individual processes are “sandboxed”
« Cannot access or affect any other process
* If a process is buggy or malicious it does not compromise the entire system

:* Traditional Embedded System ===+ ; ol [OHM ¢

OS and software EY—— Malicious!
P Processes Learning Data while (1)
Machine Learning
: Interface
[Scheduler][Wireless][GPIO] : .
(weu) Ttimer J[_apc | Kernel || | Scheduler | [wpu | [Timer || ADC
[Debug][Encryption][Sensor] (Rust) [Wireless][Debug][Encryption][Sensor

Hardware

Kernel written entirely in Rust iy

7VIRGINIA

» Rust: type- and memory-safe systems language

» Types enforced by compiler: no buffer overflows, null dereferences, or arbitrary memory
accesses

 Fast: statically compiled, within 30% performance with C
* No garbage collection, all memory lifetimes tracked

» ...but low-level OS code is fundamentally memory-unsafe
* Memory-mapped I/O
* Interrupts
» Context switches
» System calls

» Rust provides the unsafe keyword as an escape hatch
 Disables certain (not all) compiler checks
 Additional language features allowed (e.g. dereferencing pointers)
» Tock very explicit about where unsafe is used

-
allig
UNIVERSITY
JVIRGINIA

Architectural trust layers

* Applications
« Completely untrusted
* Isolated using MPU

» Capsules
* Untrusted
* [n Rust, no unsafe

* Core Kernel & Drivers
* Trusted
e Limited unsafe

Increasing Trust

A
ZA
HimE

UNIVERSITY
JVIRGINIA

Capsules
(Filesystems, network stacks, virtualization layers,
sensor drivers, credential verifiers)

Core Kernel Hardware Drivers
(Process Loading, Context (Timer, SPI, UART, Radio,
Switches, Scheduling) AES, etc.)

| orTrr—

Tock Threat Model U IéTLiEsm

7VIRGINIA

Formal Definition of what the kernel guarantees

Isolation Provided to Processes

« Confidentiality: A process' data may not be accessed by other processes or
by capsules, unless explicitly permitted by the process.

* Integrity: Process data may not be modified by other processes or by
capsules, except when allowed by the process.

+ Availability: Processes may not deny service to each other at runtime.

Isolation Provided to Kernel Code

- Confidentiality: Kernel data may not be accessed by processes or
capsules, except where explicitly permitted by the owning component.

* Integrity: Processes and capsules may not modify kernel data except
through APls intentionally exposed by the owning code.

 Availability: Processes cannot starve the kernel of resources or otherwise
perform denial-of-service attacks against the kernel.
Implementing these guarantees
» Rust compiler
« Hardware memory protection
» Application format
» Software capabilities
« Code review and software architecture

More detail: https://book.tockos.org/doc/threat_model/threat_model

Challenge: ensuring reliability with limited resources gy ISN%Y

« Dynamic applications can lead to resource exhaustion in the kernel

* What happens when malloc () fails inside the kernel?!?
« Crash??

Kernel
Software Timer

HW Alarm

10

A
ZA
HimE

Dynamic allocation in the kernel is OK for a while... UNIVERSITY
7VIRGINIA
App 1 App 2
Heap
P1 allocation
Kernel P2 allocation
RAM

Allocation

11

One month

laTer

A broken/buggy/malicious app

UNIVERSITY

exhausts the kernel’s heap! AARGINIA

PN

(

Kel’n(Your PC ran into a problem and needs to restart. We're
just collecting some error info, and then we'll restart for

RAIN Y
AI |OC&’[20% complete

13

Fix: all allocation is done in “Grant” regions
UNIVERSITY

inside of process memory space AARGIA

Grant section
Timer1 allocation
Timer2 allocation

4 Grant section
Timer1 allocation
BLE allocation

Kernel
RAM <

Allocation

- .

ash {

14

If a process exhausts its Grant region, only
that process will fail/crash

Kernel
RAM <
Allocation

-

Fash

Grant section
Timer1 allocation
BLE allocation

.

Grant section
Timer1 allocation
Timer2 allocation
Timer3 allocation
Tim allog’ ion

Timer ation

ata

A
ZA
HimE

UNIVERSITY
JVIRGINIA

J

15

V- N
—~1
allg

Process format and credentials in TockQOS UNIVERSITY

IRGINIA
Tock Process
o Binary Format
« Each Tock process is in
. TBF Header
Tock Binary Format (TBF)
» TBF Header Signed
* Process Binary Process Binary Data
_ _ Complete
+ Actual instructions and data for the Process
process (compiled from any language)
e TBF Footer TBF Footer
)) Credential 1
« List of credentials for the process Credential 2
* Ex: hash, HMAC, signature
rogler U Cregenciats g2y

Length 32

Footer TLV: Credentials (128)
Type: Reserved (0)
Length: 9472

16

Processes can be updated individually

A
Za
HimE

UNIVERSITY
7VIRGINIA
Processes stored sequentially in flash:
Tock Process Tock Process Tock Process
TBF Process Executable TBF TBF Process TBF TBF Process TBF
) Executable Executable
Header Binary Footer Header . Footer Header . Footer
Binary Binary
FLASH
Core kernel workflow:
Dynamic Process Credential Process Process Main
Process » Binary > . » Uniqueness > . > Scheduler
. Checking . Loading
Loader Discovery Checking Loop

17

Overview

* Tock Operating System
* What is it?
* Tock Threat Model
* Dynamic Memory Allocation
* Processes and Updates

 Features in-the-works
* Emerging use cases

« Community

A
ZA
HimE

UNIVERSITY
JVIRGINIA

18

Panic-free code: Converting runtime checks @
UNIVERSITY

to compile-time checks ARRGINIA
« Simple example: what happens if:

«C: memory bug
* Rust: system panic

* Crowdstrike failure shows the downsides of kernel
panics!

Let the compiler reason about where i
UNIVERSITY

crashes can happen RARGINIA
« Unrecoverable errors become abort ()

« At compile time, verify the compiler did not insert any panic()
calls
» Parse the generated ELF or LLVM IR
* Fail if panic() is present
* Panic is how rust signals a runtime error

» Better than a security vulnerability
« Still results in a security crash

» Use alternatives to avoid panic() calls
* Eg: replace buffer[15] with buffer.get(15).unwrap_or(0)

20

Growing Community around Tock UsivERsiTy

7VIRGINIA

* Tock World 7 Meeting — June 26-28, 2024 =g
» Meeting of users from academia and industry |
* Held at UCSD
* Three-day workshop

* Developers day
« Community day
 Tutorial day

« Shared progress on secure app updates
« Establishing a foundation to steward Tock
 Tutorials & Documentation

* book.tockos.org | _[O ° C kO S
« Open-source project ®

http://tockos.org

« github.com/tock/tock

21

Thank you! Questions? Unearrs

7VIRGINIA

Brad Campbell — bradjc@virginia.edu
http://www.cs.virginia.edu/~bjc8c/

* Tutorials & Documentation

* book.tockos.org TLD : C kO S

« Open-source project http://tockos.org
« github.com/tock/tock

22

