
Tock: A Safe and Secure Operating System 
for Root-of-Trust Hardware

Zero Trust Hardware Architectures Workshop (ZTHA)
September 4, 2024

Brad Campbell – bradjc@virginia.edu
http://www.cs.virginia.edu/~bjc8c/

1



2

Chromebook

AMD Ryzen AI 300



Tock: embedded operating system

3

•Key design goals
1. Safety
2. Security
3. Multiprogrammability

•Targets microcontrollers
• Ex: Cortex-M, RISC-V 32 bit
• 16-256kB RAM, 256kB-1MB code
•No virtual memory

• Industry buy-in
• Google OpenTitan, 

OpenSK
• Microsoft
• HPE
• Infineon
• OxidOS Automotive

https://opentitan.org/
https://security.googleblog.com/2020/01/say-hello-to-opensk-fully-open-source.html


Overview

•Tock Operating System
•What is it?
• Tock Threat Model
•Dynamic Memory Allocation
• Processes and Updates

•Features in-the-works
• Emerging use cases

•Community

4



Tock OS architecture
• Tock: new OS for IoT emphasizing safety and reliability

• Written in the Rust programming language (emphasizes safety and robustness)

• Individual processes are “sandboxed”
• Cannot access or affect any other process
• If a process is buggy or malicious it does not compromise the entire system

55
Hardware CPU

I2C

SPI RNG

UART

Timer

AES

ADC

DAC

Documented
Interface

Processes

Scheduler

Wireless

MPU Timer ADC

Debug Encryption Sensor

Kernel
(Rust)

Traditional Embedded System

CPU
I2C

SPI Timer

AES

ADC

DAC

Scheduler Wireless

MPU Timer ADC

Debug Encryption Sensor

Sense-and-send Machine Learning 
Data Processing

GPIO

OS and software
Sense-

and-send

Machine 
Learning Data 

Processing

Malicious!
while(1)

😈



Kernel written entirely in Rust
• Rust: type- and memory-safe systems language

• Types enforced by compiler: no buffer overflows, null dereferences, or arbitrary memory 
accesses

• Fast: statically compiled, within 30% performance with C
• No garbage collection, all memory lifetimes tracked

• …but low-level OS code is fundamentally memory-unsafe
• Memory-mapped I/O
• Interrupts
• Context switches
• System calls

• Rust provides the unsafe keyword as an escape hatch
• Disables certain (not all) compiler checks
• Additional language features allowed (e.g. dereferencing pointers)
• Tock very explicit about where unsafe is used

6



Support for 30+ boards

7



Architectural trust layers

• Applications
• Completely untrusted
• Isolated using MPU

•Capsules
• Untrusted
• In Rust, no unsafe

•Core Kernel & Drivers
• Trusted
• Limited unsafe

8

while
(1)

😈

C App 
Porte
d to 
Tock

libtock

App 
written 
in Rust

libtock-rs

[Service] BLE 
Environment

al Sensing 
Profile 

libtock libnrf

Hardware

Core Kernel
(Process Loading, Context 

Switches, Scheduling)

Hardware Drivers
(Timer, SPI, UART, Radio, 

AES, etc.)

Capsules
(Filesystems, network stacks, virtualization layers,

sensor drivers, credential verifiers)

In
cr

ea
si

ng
 T

ru
st



Tock Threat Model
• Formal Definition of what the kernel guarantees
• Isolation Provided to Processes

• Confidentiality: A process' data may not be accessed by other processes or 
by capsules, unless explicitly permitted by the process.

• Integrity: Process data may not be modified by other processes or by 
capsules, except when allowed by the process.

• Availability: Processes may not deny service to each other at runtime.
• Isolation Provided to Kernel Code

• Confidentiality: Kernel data may not be accessed by processes or 
capsules, except where explicitly permitted by the owning component.

• Integrity: Processes and capsules may not modify kernel data except 
through APIs intentionally exposed by the owning code.

• Availability: Processes cannot starve the kernel of resources or otherwise 
perform denial-of-service attacks against the kernel.

• Implementing these guarantees
• Rust compiler
• Hardware memory protection
• Application format
• Software capabilities
• Code review and software architecture

• More detail: https://book.tockos.org/doc/threat_model/threat_model
9



Challenge: ensuring reliability with limited resources

• Dynamic applications can lead to resource exhaustion in the kernel
• What happens when malloc() fails inside the kernel?!?

• Crash??

10

Software Timer

HW Alarm

Kernel



Dynamic allocation in the kernel is OK for a while…

11

Data

Stack

Code

Heap

Data

Stack

Code

Kernel
RAM

Allocation

Flash

Heap
P1 alloca(on
P2 alloca(on

Data

Stack

Code

Heap

App 1 App 2



12



App 1 App 2

13

Data

Stack

Code

Kernel
RAM

Allocation

Flash

Heap
P1 alloca(on
P2 alloca(on
P2 alloca(on
P2 alloca(on
P2 alloca(on
P2 alloca(on

Data

Stack

Code

Heap

A broken/buggy/malicious app
exhausts the kernel’s heap!

Data

Stack

Code

Heap

😈



14

Static
Data

Stack

Code

Kernel
RAM

Allocation

Flash

Data

Stack

Code

Heap

Grant section
Timer1 allocation

BLE allocation

Data

Stack

Code

Heap

Grant section
Timer1 allocation
Timer2 allocation

Fix: all allocation is done in “Grant” regions 
inside of process memory space



15

Data

Stack

Code

Heap

Grant section
Timer1 allocation

BLE allocation

Data

Stack

Code

Heap

Grant section
Timer1 allocation
Timer2 allocation
Timer3 allocation
Timer4 allocation
Timer5 allocation

Static
Data

Stack

Code

Kernel
RAM

Allocation

Flash

If a process exhausts its Grant region, only 
that process will fail/crash



Process format and credentials in TockOS

• Each Tock process is in
Tock Binary Format (TBF)

• TBF Header
• Process Binary

• Actual instructions and data for the 
process (compiled from any language)

• TBF Footer
• List of credentials for the process
• Ex: hash, HMAC, signature

TBF Header

Process Binary

TBF Footer
Credential 1
Credential 2

…

Signed
Data

Tock Process 
Binary Format

Complete 
Process

16



Processes can be updated individually

Core kernel workflow:

Process 
Binary 

Discovery

Credential 
Checking

Process 
Uniqueness 

Checking

Process 
Loading

Dynamic 
Process 
Loader

FLASH

TBF 
Header

Process Executable 
Binary

TBF 
Footer

Tock Process

TBF 
Header

Process 
Executable 

Binary

TBF 
Footer

Tock Process

TBF 
Header

Process 
Executable 

Binary

TBF 
Footer

Tock Process

Main 
Scheduler 

Loop

Processes stored sequentially in flash:

17



Overview

•Tock Operating System
•What is it?
• Tock Threat Model
•Dynamic Memory Allocation
• Processes and Updates

•Features in-the-works
• Emerging use cases

•Community

18



Panic-free code: Converting runtime checks 
to compile-time checks
•Simple example: what happens if:
 uint8_t buffer[10];
 x = buffer[15];

•C: memory bug
•Rust: system panic
•Crowdstrike failure shows the downsides of kernel 
panics!

19



Let the compiler reason about where 
crashes can happen
•Unrecoverable errors become abort()

• At compile time, verify the compiler did not insert any panic() 
calls
• Parse the generated ELF or LLVM IR
• Fail if panic() is present 
• Panic is how rust signals a runtime error

• Better than a security vulnerability
• Still results in a security crash

•Use alternatives to avoid panic() calls
• Eg: replace buffer[15] with buffer.get(15).unwrap_or(0)

20



Growing Community around Tock

• Tock World 7 Meeting – June 26-28, 2024
• Meeting of users from academia and industry

• Held at UCSD
• Three-day workshop

• Developers day
• Community day
• Tutorial day

• Shared progress on secure app updates
• Establishing a foundation to steward Tock
• Tutorials & Documentation
• book.tockos.org

•Open-source project
• github.com/tock/tock

21

http://tockos.org



Thank you! Questions?

• Tutorials & Documentation
• book.tockos.org

•Open-source project
• github.com/tock/tock

22

http://tockos.org

Brad Campbell – bradjc@virginia.edu
http://www.cs.virginia.edu/~bjc8c/


