
Faults In Our Bus: Novel Bus Fault Attacks to
Break ARM TrustZone

Anirban Chakraborty, Max Planck Institute for Security and Privacy (MPI-SP), Germany
anirban.chakraborty@mpi-sp.org

Abstract—In recent years, Trusted Execution Environments
(TEE) have emerged as a promising technology for zero-trust
architecture. Due to their strong security guarantees, even in
the presence of privileged adversaries, TEEs have become the
centerpiece of implementing critical operations in embedded
systems. In modern Internet-of-things (IoT) settings, physical
attacks such as side-channel and fault attacks are practically
relevant due to their nature of deployment and exposure in the
wild. Therefore, in order to protect them from physical attacks,
a number of techniques such as electromagnetic shields and
software checks (memory encryption), are implemented. In this
research, however, we demonstrate practical attack scenarios on
TEEs using a new dimension: SoC system bus. We first unearth
the fault characteristics of both aspects of the system bus- data
bus and address bus. We then use both data bus and address bus
faults to mount an end-to-end attack on a commercial Trusted
Execution Environment implementation for embedded systems.
Additionally, we also demonstrate loopholes in TEE specification
(specifically GlobalPlatform API specification) as well as in
Linux function return conventions that aid adversarial objectives.
Overall, this research reinforces the importance of considering
not only the software implementation of abstract specification
but also the execution environment where the implementation is
expected to operate.

I. INTRODUCTION

The Internet of Things (IoT) has become an essential part
of modern-day life, catering to billions of users across various
applications, starting from home appliances to critical services
in different industries. Quite naturally, the security aspect of
these devices in the IoT hemisphere has intrigued researchers
for the past few years. The security model of IoT ecosystem
presents newer threats and opportunities as the majority of
these embedded devices are deployed in-the-wild, mostly
without any human supervision, therefore exposing themselves
to physical adversaries. In such scenarios, an adversary can
mount a plethora of physical attacks, including (but not limited
to) fault injection (FI) attacks [?]. Fault Injection attacks are a
class of active attacks where the adversary, having physical
(or remote) access to the system, can perturb intermediate
computations of the target algorithm in a seemingly controlled
manner. Over the years, the literature on FI attacks has been
enriched with myriads of techniques which can be broadly
classified into three types - 1⃝ manipulating system parameters
such as clock frequency or voltage, 2⃝ changing external
operating environment such as temperature, and 3⃝ injecting
external electromagnetic or optical (laser) pulses.

In modern embedded systems market (more specifically in
IoT ecosystem) other than FPGAs and ASICs, Systems-on-
Chip (or SoCs) are being increasingly used. An SoC is a

general-purpose computer capable of running a full-fledged
operating system (OS) and several applications atop it. Prior
works have shown vulnerability of SoCs against faults on
processor and memory modules. In response, modern SoCs
employ a number of techniques to thwart such attacks. Given
the presence of such defences against fault attacks on SoCs, we
ask a very fundamental question: are there other architectural
features which can be used for faults, for which no known
defences are deployed yet? In this work, to the best of our
knowledge, we provide the first practical demonstration of one
such feature: system bus faults.

II. BUS FAULTS: A NOVEL FAULT ATTACK ON SOCS

We introduce bus faults - faults injected while the system
bus is operational, rather than during the computation in the
processor after the operation of the system bus is already
over. The system bus has two parts: the data bus and the
address bus. For every memory operation, the memory address
to be accessed is placed onto the address bus. Likewise,
the corresponding data is placed onto the data bus. While
most of the countermeasures have been focused on either
protecting the processor or the memory module, the system
bus has not been taken into consideration. As both data (also
instruction) and address travel through the system bus, it
provides an additional attack surface for FI attacks. We show
that a precise fault injection during the execution of store
and load instructions causes corruption of contents of both
the address and the data buses. This corruption percolates into
execution since the contents of address/data buses drive several
operations in the processor and memory. By targeting system
bus instead of directly faulting the processor/memory, our bus
faults bypass countermeasures preventing processor faults, as
well as avoid persistent memory faults (like Rowhammer)
that can cause permanent data corruption. In our experiments,
we observed that around 30% of times, the data bus fault
changes the entire 32-bit register from a non-zero value to
0x0. We denote this event as register sweeping fault model
and eventually utilize it to bypass the signature verification
check in ARM TrustZone.

III. END TO END ATTACK ON ARM TRUSTZONE

A. Attacker Threat Model

Before describing the attacks, we establish goals and as-
sumptions for the adversary. The adversarial objective is two
fold: 1 installing a malicious Trusted Application (TA) by
attacking the TEE, and 2 break symmetrically encrypted



communication channels between CA/TA by attacking the
REE (only if third-party extensions offering advanced protec-
tions are present along with default OP-TEE build). To achieve
these objectives, we assume an adversary that 1⃝ has physical
access to the device, 2⃝ can execute code on REE side, and
3⃝ whose privileges are confined to Exception Level 0 (EL0)

in the normal world.

B. Installing a malicious TA through data bus faults

All TAs in the TEE are signed by the OEM’s private key
(which is not present on the device post-deployment) and
signature verification happens every time a TA is loaded.
Installing a malicious TA without fault injection then becomes
the equivalent of forging digital signatures. With fault in-
jection, one logical attack strategy is to use an instruction
skip to bypass this signature verification. However, instruction
skips are not viable because of the presence of control-flow
integrity checks. Consequently, we use data bus faults and
exploit the programming convention of using non-zero integers
to represent errors and a 0x0 to represent success. We use data
bus faults to convert a non-zero return value of a function to
0x0, which then tricks TA signature verification to load a
malicious TA.

We now explain in detail how attack works. OP-TEE follows
an offline signing and online verification process. Since the
signature keys used to sign the TAs are not present on-device,
forging signatures through signing key leakage is impossible.
Therefore, the only possible way to load a self-signed TA is to
force a failure of this verification step. We observed that while
several error states (like security errors, out-of-memory errors,
etc.) were given 32-bit non-zero values, TEE_SUCCESS was
given a value 0x0. This is common as almost all Linux-based
function calls conventionally use a 0 to denote success, and
other integers denote several erroneous operations. We exploit
this convention for the attack.

Fault attacks require an appropriate triggering mechanism
that can drive the start and end of the active fault injec-
tion process. We use power-based side-channel traces of
multiplications to trigger fault injection. Multiplications are
computation-heavy operations that require higher power con-
sumption than other operations, and such multiplications are
heavily used in OP-TEE’s RSA-based signature verification.
We use a non-invasive triggering mechanism to indicate when
our signal generators should begin sending EM pulses. The
result of this attack is a self-signed adversarial controlled
TA getting installed in the secure world of OP-TEE, thereby
violating the security guarantees of ARM TrustZone.

C. Stealing encryption keys through address bus faults

Next, we utilize address bus faults to retrieve the symmet-
ric key from third-party key management services, such as
SeCReT, that effectively encrypt communication between a
legitimate TA and a trusted CA. Our address bus faults are
able to bypass SeCReT’s defences because our faults force the
CA’s access to its own memory pages to be invalid/faulty,
and thus cause no violation of SeCReT’s threat model. In

other words, SeCReT trusts the CA owning the symmetric
session key to behave innocently when handling its own
key, while SeCReT guards malicious accesses from other
agents (including debuggers to trace the victim) in the system.
However, because of the address bus faults, we are able to
force the CA itself to incur faults. This causes successful
creation of coredumps with the symmetric session key (shared
between CA/TA) accessible to an adversary.

IV. UUID CONFUSION: A GLOBALPLATFORM API
SPECIFICATION VULNERABILITY

GlobalPlatform API specification directs that 1⃝ each TA
has its own UUID (Universally Unique Identifier) and 2⃝ this
UUID is public knowledge. UUIDs allow a CA in the normal
world to initiate communication with a TA in the secure world
by uniquely labeling all TAs. Interestingly, the specification
does not mention how such a situation should be handled in
case two TAs are assigned the same UUID. However, with
our bus faults, the adversary can not just deploy a malicious
TA, but also choose an arbitrary UUID for it. The adversary
can install its malicious TA using the bus fault attack, which
can then masquerade as any innocent pre-installed TA. UUID
confusion has a far-reaching consequence for an in-the-wild
deployment of OP-TEE. As the adversary is free to choose
any UUID of its choice and all legitimate (and whitelisted)
UUIDs are public, it can masquerade as a legitimate TA and
hijack all communication with innocent CAs. Furthermore, it
can masquerade as gatekeeper TA and whitelist all incoming
connection requests from any CA, thereby effectively remov-
ing any source authentication from the system.

V. CONCLUSION

Presence of countermeasures like access control checks,
control flow integrity checks etc. complicate the portability
of Fault Injection attacks relevant to FPGAs and ASICs to
modern System-on-a-Chip (SoC). In this work, we mount a
novel attack on a previously unexplored architectural aspect of
an SoC- the system bus. We show how targeted electromag-
netic injections during operation of memory instructions cause
faults in the contents of data and address buses. To further
contextualize the potency of bus faults, we mount an end-to-
end attack on a practical implementation of ARM TrustZone,
demonstrating a complete breakdown of TrustZone’s security
guarantees. This work, therefore, reinforces the importance
of considering not only the cryptographic implementations
but also the execution environment where the algorithms are
expected to operate.

SPEAKER BIOGRAPHY

Anirban Chakraborty is a postdoctoral researcher at the
Max Planck Institute for Security and Privacy, Germany and
a visiting researcher at Ruhr University Bochum. He obtained
his Ph.D from the Indian Institute of Technology Kharagpur,
India, in 2024. His research interests broadly lie in the field
of microarchitecture and systems security, trusted execution
environments, and secure systems.


