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The Intersection of Al and Security

* Al's rapid adoption across industries ‘ Al should be
e Healthcare, finance, retail, ... secure

* Increasingreliance on Al in critical applications
* Autonomous vehicles, national security, smart grid, ...

* Enhance security through Al-driven frameworks
 Use machine learning to detect and respond to cyber threats in

real-time
* Use Al tools to detect and prevent money laundering, insider
trading, and other illegal activities ‘ Al for
* Many others... security

Dual focus: securing Al and leveraging Al for security

Figure Source: https://www.informationweek.com/machine-learning-ai/how-safe-and-secure-is-genai-really-#close-modal 2



Security Concerns for Al Systems

Memory snooping attack

CJ8 Physical Attacks
Cold boot attack

m: Firmware/rootkit Attacks LoJax (backdoor)
Side-channel Attacks Meltdown and Spectre
il Data Exfiltration Data Breach: many incidents

Al-Specific Security Concerns:
* Inserting malicious data points to train the Al models
 Small perturbations of the input data to mislead Al models
* Reverse-engineering for the training data or proprietary algorithms/structures
* Vulnerabilities or deficiencies of the Al models themselves


https://web-assets.esetstatic.com/wls/2018/09/Eset-LoJax.pdf

Security for Al

Maybe Al is creating a new fashion =




Secure Al Systems 11

* Trusted Execution Environments (TEEs): Secure environments for
executing Al models

* Al Accelerators: Specialized hardware for enhancing Al
performance while maintaining security

* Secure Data Handling: Ensuring data privacy and integrity during
training and inference

* Robust Al Models: Developing Al systems resilient to adversarial
attacks

* Confidential Computing: Protect data in-use, in additional to at-
rest, and in-transit




Where Are the Vulnerabilities? o¥8

Trusted Computing Base (TCB) is too large - -

e Security application and software stack
e Operating system
* Hypervisor

e Cloud infrastructure
e Hardware

CPU, Memory, FPGA,
Network, Storage, TPU, AlE,
No well-established secure framework for DPU...

heterogeneous environment in general



Secure System for Al Models with Al Accelerators

Host/CPU

User
OS
KN

Confidential VM

* Trusted Execution Environment (TEE)
* Confidential VM

e CPUs
« AMD SEV, Intel TDX, ARM TrustZone, ...

* Accelerators
* Nvidia H100 GPU for confidential computing

No systematic solutions for extending it
) arious Storage
TEE to accelerators in general Accelerators

[ Our focus today ]




* How should we provide a secure execution environment or
framework for Al accelerators?

* How should we design and integrate security solutions for Al
accelerators?

* How should security solutions for Al accelerators adapt to future
architectures that are dynamic and configurable?

* How should we design for scalable and heterogeneous systems?



Our Approach 1

Security for Al Accelerators

* Accelerator TEE Base Platform
* AccGuard: Secure and Trusted Computation
on Remote FPGA Accelerators [iISES’21]
* System Integration and Trade-offs

* AccShield: a New Trusted Execution
Environment with Machine-Learning
Accelerators [DAC’23]

* Flexible and Multi-tenant
Accelerator

* S2TAR: Shared Secure Trusted Accelerators

with Reconfiguration for Machine Learning
[CLOUD’24]

* Scalability and Heterogeneity
 Future Research

Scalability and
Heterogeneity

System Integration Flexible and Multi-

and Trade-offs tenant Accelerator

Accelerator TEE Base
Platform




Research Questions 1

Security for Al Accelerators

* How should we provide a secure
execution environment or framework for
Al accelerators?

Accelerator TEE Base
Platform

10



Threat Model

e Hardware and root of trust
e TCB
e TEE framework

Semi-trusted

e Cloud service provider

Untrusted

e Communication links

e \/Ms from other co-tenants

e Accelerators from other co-tenants
e External memory outside TEE

&
i

Side-channel attacks are outside the scope of this work,
but the mitigations can be applied orthogonally.

! Host/CPU

TEEVM

jr— Host Memory

TEE /
Confidential
VM

! Accelerator
| Device(s)

Other
Accelerators

Accelerator

Accelerator
TEE Memory



FPGA Emulation with Host TEE

& [{ost-FPGA System (Configurable Cloud)

On-board DRAM, Network, I/0, ...

Network, data bus, I/0, ...

dllk

gl

Enclave
Runtime

alls
Scoure Resource
User Apps monitor Minaglng Various user application
ayer accelerators | | I |
Host FPGA
Host: FPGA:
Lack of protection among

TEE / Enclave framework
accelerators
12



Extend Isolation for Security — FPGA Side

* Physical (design) isolation — partial reconfiguration

* Logical isolation — Secure Monitor (SM) and FPGA Security Manager
 Enforce strict resource and access control
* Secure communication channels

Encrypted
&) Host-FPGA System (Configurable Cloud) communication -
" . separate secure
" channels

EEED
o | om |
[
EEED
|| om]
Enclave

Runtime Isolation between

! accelerators
User Apps nslf)(r::iltr(fr Various user application
accelerators | |{3| I

Host FPGA

13



Block Diagram of AccGuard

The internal configuration port to
manage partial reconfiguration

Contact point for user

/
OS/Hypervisor e / Accelerator
. User,, . I/O ICAP Region 1
App Runtime B — .
|| Libraries|| [Fr——— i I@
1111l User _________ FPGA ﬂ Securlty
S - ' ervice
::App. orivers /l?nclave g dnNager '
M ciave Env. — Accel_erator
TEER DMA Region 2
- 1= Processor 1/0 _
2 stem / DRAM | [Engine

applications to interact
with the FPGA

Handles the secure communication channels, remote attestation,
and the hardware root of trust for FPGA accelerators
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Security Manager with Hardware Root of Trust

N

! /Key Exchange |[L8

Private Key of the
Shell 187, SKage &) ICAP Control
' Logic
Trusted Authority = :
e I/0O Logic Security Manager (SM)

* Private key of shell $K;.;; and public key of TA PK 4 are stored in Security Manager

* The TA generates a device root key K_DEV using the FPGA’s DNA and copies it into the
secure storage on FPGA.

 Root key (K_DEV) will facilitate device lookup and authentication.

* The shell bitstream can only be operational on the FPGA with the correct device root key.

15



Procedure of Remote Attestation

Steps 2 to 6 establish the mutual trust between

Shell FPGA Service Enclave || User App
(FPGA) (host CPU) (host CPU) (remote)

1. Initail request the FPGA shell and the host service enclave
_¢_< . .
2. DHKE dedicated to managing FPGA accelerators.
3. (DHKE & e Steps 7to 10 perform the remote attestation
challenge) sk, : ith the TA
- g 4. Request for endorsement with the : ] ]
5 6. (Response) sk, 5. (Response)| s ks j] * Step 11 and onward load the pa rtial bitstream
fameserszncncs - R s . . .
. RA measurement of the accelerator and protect its integrity
§. RA measuremen through encryption.
' 0. RA request - . . . .
_ * The procedure aborts if authentication fails or
L Accelerator Ji B2 PO result mismatch happens in any of the steps
12. Accelerator (partial) bitstream PP y P
bitstream above.
[ 13. Success/Fail 5
14. Success/Fail

16



Proof-of-Concept Implementation

* Xilinx ZedBoard (Zyng-7000) FPGA

N Used  Available Utilization (%

« One of the ARM cores runs as host and LS:‘e 433 y vailable Utilization (%)
secure monitor (TrustZone) 206 53200  84.71
 The other CPU core is integrated into the LUTRAM 11486 17400  66.01
FF 44238 106400  41.57

shell and security manager to control

accelerators and data flows. BRAM 90 140 64.28
* FPGA shell implemented using HLS and

RTL (125 MHz)

* Qur design provides strong isolation

« FPGA accelerator computing basic guarantees while minimizing the
histogram application as a synthetic performance impact
benchmark * The methodology is not FPGA-

« Compared to a software version secured specific and can be applied to
by Intel SGX (running on Intel i7-7700K: accelerator designs in general

4.2 GHz frequency and 16GB of DRAM).

17



Results — Computation Latency & Overhead

2000.00
_1800.00
£1600.00
>1400.00
£1200.00

Computation Lat
NN
o
o
o
o

o |

16MB 32MB 64MB 128MB 256 MB

Input Size

W Software (unprotected)

m Software secured by Intel SGX

W Accelerator (unprotected)

W Accelerator secured by AccGuard

10.00
9.00
8.00
7.00

26.00

£ 5.00
4.00
3.00
2.00
1.00

16 MB 32 MB 64 MB 128 MB 256 MB
Input Size

—e— Overhead of Intel SGX (ratio)
—eo— QOverhead of AccGuard (ratio)
--e-- Speedup of accelerator (unprotected)

---- Speedup of accelerator (AccGuard)
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Research Questions

Security for Al Accelerators

* How should we design and integrate
security solutions for Al accelerators?

System Integration

and Trade-offs

19



AccShield — High-level Overview

Diffie-Hellman )
e tinyTPU" to simulate cloud TPUs ey Exchange () RS [(2) SHA-3 () aes
2 : L SKua &5 ICAP Control
* Coyote“to supportvirtual memory for accelerators ® Pk Logic Logic
* Improve system security for the cloud el 10 Logic Security Manager (SM)
» Security features improved upon AccGuard3 :
* End-to-end protection from application to TPU =
. : Coyote L
* |Integration with TEE of the host o
* Flexible emulation platform /O || ICAP
Security ’ |
: Manager
Host with .
) (SM) g tinyTPU
TEE | PCle | &—— DMA & AXI ¢ | iny
x86 Interconnect Buffer / On-
chip memory
DRAM 1)

1. Fuhrmann, “Implementation of a Tensor Processing Unit with focus on Embedded Systems and the Internet of Things,” 2018.
2. Korolija, T. Roscoe, and G. Alonso, “Do OS abstractions make sense on FPGAs?” in OSDI ’20. USENIX, 2020, pp. 991-1010.

3. W. Ren, J. Pan and D. Chen, "AccGuard: Secure and Trusted Computation on Remote FPGA Accelerators," 2021 IEEE International Symposium on Smart Electronic Systems (iSES),

20




Architecture of AccShield

DL Application 1

Coyote Wrapper
Coyote Host Driver*

Host Side

DRAM Controller

Modified Coyote Static Region

TinyTPU - 1

Device Side (emulated by FPGA)




Architecture of AccShield

TinyTPU
4

DRAM Controller

DL Application 1

Coyote Wrapper
Coyote Host Driver*

DL Application 2

| TinyTPU-2

TinyTPU - 4

TinyTPU - 1

DL Application 4

Modified Coyote Static Region

22



Architecture of AccShield

TinyTPU
4

DRAM Controller

DL Application 1

Coyote Wrapper
Coyote Host Driver*

DL Application 2

| TinyTPU-2

TinyTPU - 4

TinyTPU - 1

DL Application 4

Modified Coyote Static Region

23



Architecture of AccShield

TinyTPU TinyTPU TinyTPU

ok a |
— Untrusted link

s Trusted link

@ DL Application 1

O,,,Coyote Wrapper - il -
Coyote Host Driver* :Block :
@ ! Rd/Wr DMACmd _ _
[ 1 .
£DL Application 2 E | ~— AES Engine 5 TinyTPU - 1
w 1
P " |
< <}l <L
I
—1
TinyTPU - 4
DL Application 4 : P
1 ___ _ Block2
Modified Coyote Static Region
Host Side Device Side



Partition-Based (Config. @)

Weights
s Untrusted link (data encrypted) & data
TinyTPU TinyTPU
5 /&2
DRAM Controller
- S5 Weights & data

s Trusted link (no encryption)

Ek_]._ S
. — e — ans
DL Application 1 e o o e —
: ]

Coyotegglrapper : T gg‘ 50 £ TinyTPU - 1
AccShiel it Driver* w T
I ] | B4
_ Il 1< <

- - :— Lm— . -

Host VM does the
encryption before
data enters PCle
link, as currently
host TEE does not
expose or allow
setting encryption
keys.

Q] Application 2

(o 3

\
\

o |

: TinyTPU - 4
I

Block 2

Modified Coyote Static Region
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Encryption-Based (Config. ®)

—— Untrusted link (data encrypted) TinyTPU TinyTPU

2 4

DRAM Controller

s Trusted link (no encryption)

Q]DL Application 1

S, ke
T TH T T | _Rd/WrDMACmd_ _
' : -:— AES Engine & TinyTPU - 1
o | | ]
| 1__ _J i - £ TinyTPU - 2
| =l

mwm AES Engine

TinyTPU - 4

DL Application 4

Modified Coyote Static Region
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Encryption-Based (Config. ®)

—— Untrusted link (data encrypted)

TinyTPU TinyTPU
2 4

s Trusted link (no encryption)

Q]DL Application 1

O,.Coyote Wic e iy ——-—-—-—-—-=-- I
Coyote Host Driver* I Block 1
+ 4+~ 4+ !
= | _Rd/Wr DMA Cmd
|

DRAM Controller

l
l
I ______
DL Application 2 ! : — AES Engine 5 TinyTPU - 1
- o 3 : ' : __________
Host does the | : " 2 TinyTPU - 2
encryption before : e el o/ .

data enters PCle
link, as currently
host TEE does not
expose or allow
setting encryption DL Application 4
keys.

- mwm AES Engine

TinyTPU - 4

Modified Coyote Static Region
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Encryption-Based (Config. ®)

—— Untrusted link (data encrypted)

TinyTPU

s Trusted link (no encryption)

Q]DL Application 1

O,.Coyote Wrapper

Data remains
— - Encryptedin
Device memory

Coyote Host Diiver* : Block 1
o i
| A !
— : : £ TinyTPU - 1
—_ — " | :[ // : )
Host does the | L | i £ TinyTPU -2
encryption before :. dEgpEE ! ;

data enters PCle
link, as currently
host TEE does not
expose or allow
setting encryption DL Application 4
keys.

TinyTPU - 4

Modified Coyote Static Region
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Encryption-Based (Config. ®)

—— Untrusted link (data encrypted) TinyTPU

s Trusted link (no encryption) @ 4

CoLneid 831

O,.Coyote \We,er

Coyote Host Driver* : Block 1
o] 1Irti reiri
2 , / :
_ % ) I.’Application 2 : : @ TinyTPU - 1
Host does the I §og | d @ e
encryption before @ :. diguE | .

data enters PCle
link, as currently
host TEE does not
expose or allow
setting encryption DL Application 4
keys.

TinyTPU - 4

Data decrypted
upon access.

Modified Coyote Static Region
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Experimental Setup

Untrusted link (data encrypted)

Device Trusted link (no encryption) “ Ti"\gPU
Link
- Memo I‘y BlOCk BlOCk Coyote Wrapper [
E ncryptlo . . . Coyote Host Driver* i
> Encryptio | Engine 1 | Engine 2 ! g
4t n? i i . ________ £ TinyTPU - 1
@ pCle | EJI_E ------------ £ TinyTPU -2
: X X X X g L= anaeea .o
Baseline DMA
P | 1Bl | | AccShield | |--=—-——3--<XZL
TinyTPU - 4
@ V x V x DL Application 4
LinkEne. -~ /7 T T EEEEESES_— L
@ Hypervisor Modified Coyote Static Region
LinkEnc. e : _____ _._._._._._._._-_._._.T.__ ....................
V V x V Host Side Device Side
+ Mem
Enc.
@
Mem X v v v
Enc.
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Experimental Setup

Untrusted link (data encrypted)
Trusted link (no encryption)
. Device
LIk Block
Encryptio .
yp Engine 2 AMD
Ryzen
o 53925(;’;’ Xilinx VCU118 FPGA
el X X X X
aseline DDR4
@) host
Link Enc. v X v X memory
® |
LinkEnc. -— = n = ;OSt_SId:_ _'_'_'_'_'_'_'_'_'_'B‘;vi_cé;iée ...................
. v v x v
Enc. FPGA Resource Utilization of AccShield
o I T e T T
Mem x V V V 0, 0, 0, 0, 0,
Enc. AccShield 17.9% 2.41% 15.9% 15.7% 0.1%
Total

(VCU118) 1182240 591840 2364480 2160 6840
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Evaluation

Performance Result of Dense/Fully Connected Layer (784 x504)

.. ) ) Host to Device Layer Device to
¢ Partltlon‘based deS|gn (@) INCUrs 4.1 1% . Transfer (ms) Computation(ms) Host
overhead in FC and 0.9% in LeNet-5, much | SEEEE mmey posvs wih T Ne :
lower than device memory encryption- Page | Page OCM | OCM (ms)
based design (®). Config® 0.416 0.705 0.125 4.206  79.301 0.0035 Baseline
° On_Chip memory/cache can Significantly Config @ 4.630 1.484 0.284 4.225 79.434 0.0038 4.11%
reduce overhead of device memory Config® 0.517 1.014 0.205 4.717  122.51 0.0038 13.64%
encryption. ,
Config® 4.531 1.137 0.217 4.692 122.97 0.0038 13.34%
* Device memory encryption will dominate Performance Result of LeNet-5
the total overhead in future standards (e.g., Host to Device Device to
TDISP). . Transfer (ms) Layer Host Total
Configs Computation . Overhead
. . . 4KB 2MB (ms) Writeback i
* Demand paging still has large overhead in Page Page (ms)
unified virtual memory. Config® 0218  0.709  0.065 23.15 0.0028  Baseline
Config®  2.318 1.492  0.141 23.29 0.0065 0.9%
Config®  0.253 1.032  0.103 26.02 0.0058 12.53%

Config® 2.283 1.161 0.126 25.71 0.0054 11.3%
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Multi-tenancy

Overall latency overhead per tenant
increases by ~3.5% (worst case)

For link encryption (@), the increase in the
overhead is not proportional to number of
tenants

With multiple channels, multi-tenancy can
help better utilize PCle link throughout

o Even though single AES engine bottlenecks the
channel throughput

28
27
[72]
£ 26
£ 25
5 24
T 23
(@]
=22
21

3500
@ 3000
z

5 2500
o

< 2000
-

2 1500
1000
50

/s

o

Aggreate th

o

Latency Comparison in Multi-tenant Setup

tinyTPU x1 tinyTPU x2 tinyTPU x4

mConfig® mConfig@ mConfig® mConfigd®

Aggregate host-to-device Throughput

tinyTPU x1 tinyTPU x2 tinyTPU x4

m Config® mConfig@®@ mConfig® mConfig®
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Observations and Takeaways

* AccShield and its prototype desigh demonstrate feasibility of:
 Strong security for ML accelerators in the cloud

* Relatively low performance impact (~4% for link encryption, ~13% for link &
device encryption)

« Compared to device memory encryption overhead, partition-
based memory protection offers TEE solution with significantly
lower overhead for accelerators

* Memory encryption is heavily dependent on the size of data and
availability of cache for TPU-like accelerators

* Open-source design



Research Questions

Security for Al Accelerators

* How should security solutions for Al Flexible and Multi-
accelerators adapt to future
architectures that are dynamic and
configurable?

tenant Accelerator
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S2TAR Trusted Execution Environment

= With dynamic partitions, S°TAR offers:
| Hosbmer

different workloads (i.e., MatMul of different sizes), at _
Hypervisor (KVM)
runtime. ]

= “Reshape” TPU to use the best configuration for

QDMA

S?TAR TEE

TEE
Manager Coyote RoT

Crypto Enc/Dec

S?TAR TPU RoT

Instr. Unit

Part. 0 C Part.1 Part. 2 Part. 3

SA SA N SA SA

)
@
<.
o
@
<
@
3
o
<

Buffer Buffer T Buffer Buffer
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S2TAR Trusted Execution Environment

= With dynamic partitions, S°TAR offers:

= “Reshape” TPU to use the best configuration for
different workloads (i.e., MatMul of different sizes), at

runtime.
= |solated partitions that allow sharing TPU spatially QDMA
among tenants S?TAR TEE
Crypto Enc/Dec
TEE
= TEE Framework provides: Manager Coyote | RoT

S?TARK TPU RoT

Instr. Unit Instr. Unit

= \/Ms with PCle Physical Function (PF) passthrough

= |nterface to interact with TPU partition TEE Partition 0 Partition 1

= Partition-level attestation Systolic Array Systolic Array

)
@
<.
o
@
<
@
3
o
)
<

Buffer Buffer
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Runtime-Reconfigurable TPU - Systolic Array

oEach systolic array comes with
switchboxes (muxes/de-muxes)

oSeparate buffers for each systolic array
oLightweight buffer (BRAM) controller

oReconfiguration

oChanging the select signals
oUpdating the configuration register

K To unified buffe*

array

S From weight buffer
( input) - -i ------- :L- ------------- I- i
Fror:‘ %.eft \{ > PE PE PE
systolic
array » o
=
E > PE PE PE
|
=
=
From =
uniﬁed»
buffer / > PE PE PE
|- T —J
select_ﬁ/ 1\iIu1ti-bit Demux \_
(Soutput)
output Accumulator

To bottom systw
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Runtime-Reconfigurable TPU

Configured as Four Partitions

| Activation Units

TEE Coordinator

PUF Crypto

5

Control Unit l [=——— _;. — ]
|
Instruction Unit ? Systolic Systolic :
Instruction Unit Array Array |1
Instruction Unit 7 7 :
Instruction Unit £ i — b e ,.\_\
Weight Buffer - ' - \\
- \ Dedicated Buffer | ~— Dedicated Buffer
Weight Buffer — -
Weight Buffer { Dedicated Buffer ('_, Dedicated Buffer
Weight Buffer A i A
Conv to GEMM :

Systolic
Array

|

Systolic
Array

|

From left \{ PE PE PE
systolic
array ) .
= PE || PE | .. | PE
2
=
s
From =
uniﬁed+
buffer / PE PE PE
- T _J
select > l\i[ultl-blt Demux \_
(S )
output Accumulator
\\’ To unified bu ffe* To bottom systolic

array
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Runtime-Reconfigurable TPU

Configured as One Partition

lect  rf-----oo------ TNt TnETTTT '
,¢’ (g(? e¢ ) - From weight buffer :
¥ Input/f ~  ~TTTTTTTTTTTTTTTTooTTTomTooeTT
g v v
Y e
Y
’/
Control Unit i l [ —— _l -’ From left \£ ~>» PE PE PE
. _ : systolic
Instruction Unit ™| Systolic Systolic I array »
: Instruction Unit : Array Array |} g
e L L i
] Instruction Unit i 7 : = —>» PE PE PE
e | ==—=N i Y { 20
v . v \ =
_________________________ _ \\ From =
______ Weight Buffer - - - - - - ‘_—) Unified Buffer < \\ 1;)1‘111111::1[::1('1-* / ‘> PE PE PE
------------------------- , : \\ - |- J
(S = \
Conv to GEMM ' ! ' \
I \ —
| Activation Units | ; \\ select ?/ l\ilultl-blt Demux \
, Systolic ) Systolic \ (Syutout)
TEE Coordinator %> i . \\ i Accumulator
PUF Crypto [ l \\’ To unified bu ffe* To bot’:l(;rrr:1 ;ystohc
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Partition-level Attestation

" Finer granularity - attestation of individual sub-device partitions within the TPU

=" Improved attestation efficiency - decouples host and accelerator TEE attestation

= Attestation with dynamic partition update:
1. Dynamic partitioning triggers internal configuration register update
2. Attestation reportincludes configuration details for verification

3. Signed with unique key derived from TPU's Root of Trust (RoT)
= PUF-based RoTl guarantees report authenticity and integrity

41



Model Benchmarks

BEE TPU with 64x64 PEs (S=64) BEE TPU with 64x64 PEs (S=64)
ResNet-18 s TPU with 128x128 PEs (S=128) YOLOvVS s TPU with 128x128 PEs (5=128)

600

= 1000 =

c € 500

> 800 >

£ £ 400

[ [

600

s 5300

3 4001 =

9 g 200

%200 Yi00d

1 Partition 2 Partitions 4 Partitions Dynamic 1 Partition 2 Partitions 4 Partitions Dynamic
(Lof [S,S]) (20fI[S, S/2]) (4 of [S/2,S/2]) Partitioning (Lof [S,S]) (20f[S, S/2]) (4 of [S/2, S/2]) Partitioning
M LP I TPU with 64x64 PEs (5=64) B TPU with 64x64 PEs (5=64)
[128, 96, 96, 10] == TPU with 128x128 PEs (5=128) BLOOM-560M  was 1pU with 128x128 PEs (5=128)
601 5000
) —~
%))
~ 501 € 4000
e o
£ 40/ =
(o i= 3000
'5 ] 'E 2000
-+J +
=]
o 20 9
% i 1000
w101
0.
1 Partition 2 Partitions 4 Partitions Dynamic 1 Partition 2 Partitions 4 Partitions Dynamic
(1 of [S,S]) (20f[S,S/2]) (4 of [S/2, S/2]) Partitioning (1 of [S, S)) (2 of [S, S/2]1) (4 of [S/2, S/2]) Partitioning
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Multi-tenant Experiments

—e—ResNet-18 (Static) ——YOLO (Static)

—+—ResNet-18 (Dynamic) ——YOLO (Dynamic)
* Enhances overall task

6000

throughput and reduces tail ™
. ] = 5000
latency by partitioning TPUs > oo
for concurrent requests. 5
* Reduced average latency up to ;'“;
17.5% o o
o
« Reduced worst-case latency up z
to 33.1% 0

0 0.5 1 15 2 25 3 3.5

Request Rate (A)

t: Time interval (e.g., 1 second)

A: Requests per second

Requests follow a Poisson distribution

Measure how long each request takes (on average)
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Observations and Takeaways

* Dynamic Reconfiguration:

* Performance improvement with partitions adapted according to workload
requirements

* Effective utilization improvement by reducing idle PEs

* Multi-tenant Security: Enforces isolation and leverages TEEs for
secure execution within partitions

* Fine-grained Trust with Remote Attestation: Extends trust
guarantees to individual partitions, enabling fast re-attestation after
dynamic reconfiguration

* Open-source Design
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Al for Security

—
b
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w
E —

\\\\\\\\\\\f .
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Leveraging Al for Enhanced Security

-

* Real-Time Threat Detection: Using Al to identify and mitigate cyber
threats
* Real-Time Monitoring and Response: Al-driven security Ourfocus
\ monitoring today Y
* Predictive Analysis: Al’s ability to forecast potential security
breaches

* Automated Response Systems: Al-driven frameworks for rapid
Incident response

* Feedback Loop: Continuous improvement and updates to models
and systems
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Threats in Critical Systems and Data Centers

B B o Sign in News Sport Weather Shop Reel Travel Mor

N EWS m BUSINESS Markets Tech Media Success Perspectives Video

Home Video World Asia UK Business Tech Science Stories Entertainment &

Technology

_ _ Massive cyberattack turned ordinary devices
Energy firms hacked by 'cyber-espionage ,
group Dragonfly' INTO WEaPONS

® 1 July 2014 f ® W [ < Share

By the numbers Home Notifyme Domainsearch Who's beenpwned Passwords APl About Donate B
Overview of 2022 and 2023 key statistics

2.6 80% LET i
billion e e — have i been pwned?

Over 2.6 billion personal records

r \ed in 2021 and 2022
(1.1 billion in 2021 snd 1.5 billion
n2022) A

3x < &

The number of dats breaches

Check if your email address is in a data breach

ntheus increased
by nearly 20% compared to all
of 2022234 =

95%

1 the 2023 1BM Cost of 8

surveyed or
were victime of a dats breach
n the prior 12 months." }v..‘

The Continued Threat
to Personal Data?

Have | been pawned?3

23andMe Data Breach?

1: https://techcrunch.com/2023/12/04/23andme-confirms-hackers-stole-ancestry-data-on-6-9-million-users/
2: Stuart E. Madnick, The Continued Threat to Personal Data: Key Factors Behind the 2023 Increase, Dec 2023 52
3: https://haveibeenpwned.com/


https://techcrunch.com/2023/12/04/23andme-confirms-hackers-stole-ancestry-data-on-6-9-million-users/
https://haveibeenpwned.com/

One Example on Cyber Physical Systems
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]

H. Farhangi, “The path of the smart grid”, IEEE power and energy magazine, vol. 8, no. 1, pp. 18-28, 2009. 53



One Attacking Scenario: the Delay Attack

Tom Alice
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Time Delay Attack I

Message
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> Receiver
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Time Delay Attack I

> Receiver

> Receiver

Listener
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Time Delay Attack 1

> Receiver

> Receiver

Listener Repeater
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Time Delay Attack I
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A
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Listener Repeater
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Hierarchical LSTM for Real-Time TDA Detection

Longer backprop

h
pat o «

L L L L L L

PCOOPOO®

Traditional LSTM

Cells are connected sequentially
Long backpropagation through all
cells loses effectiveness

D

Shorter backprop ‘
path 7 0

L

L L L L L

POOPOO®

Hierarchical LSTM

First level is cut into small groups
Additional layers of cells are added
to shorten the backprop path for
each group
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Specialized Detection and Characterization

H-LSTM Detecting and characterizing the
layers TDA requires different feature
processing:

* H-LSTMis used as the backbone
to capture the features

* Different ‘heads’ for different
functionalities

* Regression uses classification
results to further improve the
accuracy

/
y

T
LA

Regression Output Classification Output
(Characterization) (Detection)
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Asynchronous Training

eeemeeesneesssesssesssesieeo |  Detection and

* First train the
regression head with

j‘ Regression Training ‘ Classification Training CharaCterlzatlon

| ©0 00t 00 - 00, heads are trained
j‘ HLSTM layers : HLSTM layers . 1 Separately

| i ‘ l Frozen part

Dense fully !

 comnecte et the LSTM backbone
q oo | « Then freeze the

| | trained part during

| ot ; ot ot the training of

classification

61



Comparing Against Baseline Models

« Our model provides the minimal errors compared against traditional models
« All existing methods provide post-mortem analysis, but our method can provide real-time results
« reduce the average reaction latency from 300s to 128s

Classification (Detection) Regres§|on.
Approach (Characterization)
Accuracy FP FN MAE RMSE Tavg
11.8 15.6
KNN 72.6% 2 4
6% % % 6.23 9.48 300
13.9
Random Forest 80.82% 5.2% o 6.44 10.32 300
0
(Lou et al, 2019) -- -- -- 3.73 6.84 300
Our Model [TSG’21] 92.39% 4.7% 2.9% 2.03 5.48 128
MAE: mean absolute error
RMSE: root-mean-square error
[TSG’21] P. Ganesh, et.al., “Learning-based Simultaneous Detection and Characterization of Time Delay Attack in Cyber-Physical 62

Systems”, IEEE Transactions on Smart Grid, July 2021.



Threats in Cross-Domain Communication

* Cross-domain communication is important in multiple domains, e.g., Military and
Defense, Healthcare, Internet of Things (loT), etc.

* Devices in each domain can be compromised.

46% 15 Attacks tafrgetinghopen
source software have
Of the 78% of IoT devices We discovered " 1 I 1 1
with known vulnerabilities on 15 new zero-day ?Zgg/n LS ArtIﬁCIaI Intelllgence WI" be al
customer networks, 46% cannot  NEINEEIIE N oWl 0 41
e besms. | critical component of successful

highlighting the significant risks
associated with not addressing supply
chain vulnerabilities to ensure the
security of critical infrastructure

and systems.

defense. In the coming years,

innovation in Al-powered cyber
0 Find out more on page 84 Find out more on page 93 .

25% defense will help reverse the

of OT devices on

customer networks use o o .
el o of devices on current rising tide of cyberattacks.
legacy firmware are
exploitable to a high Tom Burt, Corporate Vice President, Customer Security and Trust, Microsoft

number of CVEs (>10).

n

(@ Find out more on page 81

https://www.microsoft.com/en-us/security/security-insider/microsoft-digital-defense-report-2023
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Another Scenario: Autoencoder against Cyberattacks

* Autoencoder-based Al models show strong potential for anomaly
detection and work in an unsupervised fashion.

/
\

Autoencoder
Input Output
O » | — =Y
_ ° 8 5 53 _
X = (xlerf ""xn) 8 c C>U. Xhidden 'C<D 8 8_ Y = (yl; 2""1yn)
cC = =
w -~ @

Update weights

If loss exceeds a threshold, the

loss = MSE(X,Y) input is reported as an anomaly

“Anomaly Score”
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How to Deal with Evolving Data Streams?

* One prior work, ARCUST, proposes to deploy multiple models to
adapt to the evolving data

Model Pool

( ) Exceed a Update Model
Input Batch AE, D ﬂ Reliability threshold
Calculation

B = (X1, X2, ., Xn) |:> ) ’ I:> of Models :> [AEMaXRe“a D G]

r 2

and the
AEq Pool

\ J

% Add a Model
Below the
threshold AEnew

1. Yoon, Susik, et al. "Adaptive model pooling for online deep anomaly detection from a complex evolving data stream." Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2022.
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Raw Data Is not Stable in Evolving Data Streams

« ARCUS feeds unstable raw data into models, which leads to low
reliability of the model pool.

ARCUS on unsw Ours on unsw

1.O} 1 1.0 T l, ~
—_ ireshold 3 Reliability tHreshold
= 08t < 0.8}
o 0.6 = 06
E ey
=04 = 04
& -

0.2 0.2

0 500 1000 1500 3000 0 500 1000 1500 2000
Batch Batch
(a) The reliability of models using ARCUS on unsw (b) The reliability of models using ours on unsw

66



How to Preprocess the Data? 1)

* Given the fact that the related data of normal objects should not change
quickly at a certain period, we propose to feed the degree of change (DoC)
instead of the raw data into the model.

DoC(x, target) = (x — target)[target

* Which “value” should be the target?
* Historical data: historical data may form some clusters
* Recent data: recent data reflects current trend

DoCyx = a % DoCe + (1 — a) = DoCy
a indicates the ratio of DoC contributed by historical data
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The Preprocessing Algorithm

* How to get the DoC?

 We use a, thres (the DoC threshold to determine whether one item can belong to a cluster),
and step (the number of buffered recent items).

Algorithm 1 The Proposed Data Preprocessing Algorithm

Input: The input data stream s, «, thres, step

Output: The degree of change DoC of each item x in s
1: Initialize clusters, DoC, and buf ferrecent With step elements w
2: for item x in s do

3: Find the target cluster according to the degree of change threshold thres

4: if the number of items in the target cluster is less than 5 then /

5: DoC, equals the degree of change compared to the closest cluster @

6: else -

7: DoC, equals the degree of change compared to the target cluster

8: end if » time
9: Update buf ferrecent in a FIFO manner

10: Calculate DoC, targeting the mean of buf feryecent

11: Calculate DoCy using a, DoC,, and DoCy — bufferrecent Xt

12: Append DoCx to DoC
13: end for
14: Return DoC
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The Accuracy of Anomaly Detection

* We have increased around 0.11 AUC (i.e., the accuracy) in average compared
to ARCUS. Our proposed method can achieve the top-2 accuracy on all the
benchmarks compared to related works.

Dataset Ours | ARCUS | sLSTM-ED | sREBM | STARE | RRCF | MiLOF | DILOF | MStream
INSECTS-Abr 0.753 | 0.631 0.749 0.471 0.555 0.695 | 0.393 0.730 0.709
INSECTS-Inc 0.706 | 0.600 0.696 0.383 0.559 | 0.669 | 0.415 0.757 0.593

INSECTS-IncGrd | 0.753 | 0.641 0.795 0.575 0.594 | 0.719 | 0.395 0.746 0.628
INSECTS-IncRec | 0.743 | 0.634 0.709 0.491 0.551 0.680 | 0.381 0.743 0.637
GAS 0.88 0.878 0.408 0.506 0.635 0.804 | 0.589 0.470 0.480

RIALTO 0.875 | 0.784 0.617 0.492 0.532 0.731 0.456 0.742 0.699

unsw 0.579 | 0.466 NA NA NA NA NA NA NA
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Multi-Dimensional Objectives

il

Scalability

Heterogeneity

Efficiency

Security

Computation CPU

Configurable becomes frequency

acceleration ot more no longer
rogen
eterogenous scales

Scalable and

Heterogenous
SYRICINE
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Efficient and Secure Data and Model Sharing

e Intra-user TEEs

* Multiple TEEs belong to the same
user

* Inter-user TEEs
 TEEs of different users

* Energy monitoring (e.g., IBM
Kepler)

* Applications:
* Large Foundation Model (e.g.,

LLMs) shared by multiple
downstream tasks

* Workload traffic dynamically
changing and evolving

Host
Mem

Device

Userspace Userspace
Driver

1 [[))‘:I‘CZ‘: DMA DMA
v | BYF we | BUF

Guest VM O Guept VM 1

I Model Data

.
Hypefvisor

Root Complex

velve) Coe] [ veIlve) (e

AccShield AccShield

el Date MY venl ate
FPGA RV L #HCY Mem| Data




Scalability, Heterogeneity, Efficiency, Security

Distributed Al workloads with many
accelerator TEEs collaborate across
nodes or even network

Sustainability throughout the system
stacks as an important dimension of

global optimization

New efficient & secure programming
models, libraries, and tools for Al
applications

Al-driven resource management and
control and Al-assisted attack
detection and containment

End-to-end protection

GPLJ GPU GPU

GPU GPU GPU
Cores Cores Cores [

Multi-Instance GPU (MIG)

l

Secure | Secure
M v e

Hypervisor

Host
(SEV)

Accelerator
TEE

Accelerator
TEE

Secure Accelerators

Data

Processing Unit
(DPU)

Data

Processing Unit
(DPU) SmartNIC

GPLJ GPU GPU

GPU GPU GPU
Cores Cores Cores

Multi-Instance GPU (MIG)

l

Secure Secure %
VM VM

Hypervisor

Host
(SEV)

Accelerator
TEE

TEE

Secure Accelerators
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* Security for Al is essential
* Accelerator TEE is an important building block
* System Integration and Trade-offs
* Adaptability - Flexible and Multi-tenant Accelerator design
* Challenges: to be consistent and scalable for various Al accelerators

* Al for Security is emerging
* On-line real-time attack & anomaly detection and responses
* Smart resource management and control methods
* Challenges: accuracy, robustness, predictability, interpretability

* The Two Working Together is exciting
e Scalability + Heterogeneity + Efficiency + Security

* Distributed TEE environment and end-to-end protection for dynamically
changing Al workloads
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