New frontiers in Security Verification:
Fuzzing and Penetration Testing

Farimah Farahmandi

Wally Rhines Endowed Professor in Hardware Security
Assistant Professor, Dept. of Electrical and Computer Engineering, UF
Associate Director, Florida Institute for Cybersecurity (FICS)

A —O By UF
n Research FLORIDA

g. .% 05/17/2024

Q[
O_I

Outline

4__________Q____°.____Q

SoC Security Verification

Definition of Security Verification, The
“Verification Crisis”, Challenges,
Promising Solutions

Part 1: Fuzzy/Fuzz Testing

Background, High-Level Overview, Proposed
Approaches, Results, Comparison, Summary

Part 2: Penetration (Pen) Testing

Background, Definition, High-Level Overview,
Example Framework, Results, Summary

wwwwwwww

nnnnnnnnnnnnnn

U vavavavavavavava

Outline

0 SoC Security Verification

Definition of Security Verification, The
“Verification Crisis”, Challenges,
Promising Solutions

= = mm mm m o = =

\\\\\

UUUUUUUUU

SoC Market Size

Semiconductor
Market Size

$573.4B

SoC market value is growing thanks to Al accelerators,

increased connectivity, and diversity of applications

uuuuuu

‘‘‘‘‘‘‘‘‘

® o0
XY ;

PCB Market Size

$82.4B

U vavavavavavava

EDA Market Size

Verification market
AN $14 0B

EDA solutions are growing to address the need to
power and performance and move to 2.5D and 3D

Microelectronics
Security (2030)

HHHHHH

\\\\\

UUUUUUUUUU

nnnnnnnnnnn

Modern SoCs: Security is a Challenge FYCS

Tens of billions Designed around

On-chip device keys | transistors the globe
developer/OEM
De\fice coniiguratior? Many
custom/legacy/ Tens of IPs from
Manufacturer Firmware security CLIET o 3P vendors
Application software functionality e
On-device sensitive data _ _
Communication [__ M?r_‘y security Aggressive time-
credentials critical assets to-market
Random number or
entropy Ensuring security Iis a challenge
E-fuse,
PUF, and more...
— Image Source: https://novelbits.io/chipset-vs-module-bluetooth-le-solutions-the-ultimate- 6

quide/

Growing # Vulnerabilities — Verification is a MUST FC |UF

Fault Injection
Privilege Escalation
Trojan Insertion
Trace Buffer

EM Side-Channel
CLKSCREW
Denial-of-Service
Vector Rewrite
Rowhammer

Power Side-Channel
Direct Memory Access
BranchScope

Bitstream Encryption
Cracking

Strong Algorithm &
Plundervolt Architecture

Access Control
Meltdown and Spectre
Machine Learning
Information Leakage

Trusted Execution
Environment Breaking

Reset and Flush Weak Iplemgntatin &
Branch Shadowing ' Execu_tl_on |

Bitstream Tampering

Reverse Engineering
Timing Side-Channel
Integrity

Security: An Indispensable Aspect of Verification

nnnnnnnnnnnnn

* In addition to functional, performance requirements, security requirements have recently

emerged important concerns:

— Lack of understanding of security vulnerabilities by designers
— Recent reports of critical hardware security vulnerabilities in commercial products

Information leakage, p-architectural side channels, fault injection, hardware trojans, etc....

Apple Silicon Exclusively Hit With World-First
"Augury" DMP Vulnerability

By Francisco Pires published May 03, 2022

Apple's A14, M1, and M1 Max SoCs confirmed vulnerable

Hardware

Software exploitable

hardware vuln.

Spectre returns - Intel and ARM-based CPUs
hit by serious vulnerability

By Sead Fadilpasic last updated April 14, 2022

Spectre is back with a vengeance, experts warn

Vuin.

m SECURITY AUG 18, 2822 18:88 AM
The Hacking of Starlink Terminals Has Begun

It cost a researcher only $25 worth of parts to create a tool that allows custom code to run on the satellite dishes.

Fault injection,
physical

side_channels

New Collide+Power side-channel attack impacts almost all CPUs

By Bill Toulas August 2, 2023 01:37 PM

Recently reported security vuln. in commercial SoCs

Need for Dynamic Verification: A Case Study

* InaRISC-V SoC

— There may be up to 3 privilege levels: M, S and U

nnnnnnn

Rcsearch

— Privileged access is protected through a complex interplay between hardware and

software
Hardware
Peripheral]
Peripheral
e Peripheral
Peripheral
L Peripheral
Interconnect
CPU Execute unit
Decoder
Fetch unit Reg file
Program
Except counter

| handler

Software

User application

Boot/Startup code

Assume: M and U-modes are implemented

All rights reserved

‘ FLORIDA

nnnnnnnnnnnnn

Need for Dynamic Verification: A Case Study

* Ina RISC-V SoC
— When an illegal access is detected, hardware raises an illegal instruction exception

— The hardware program counter will jump to address stored in register mtvec
— mtvec needs to be configured properly

— Software trap handler code will handle the response

* Hardware-software interplay is indispensable for protection of assets.

Instruction 1
Instruction 2
Instruction 3 (illegal)

Instruction 4

la x1, __crt@_trap_handler // configure early-boot trap handler

csrw mtvec, x1

csrw mie, zZero // disable all interrupt sources
exception

Assume: M and U-modes are implemented, baremetal scenario
All rights reserved 10

Alibaba’s T-Head C910 RISC-V, April 2024

* German Center for Information Security has found serious security flaws in
Alibaba’s T-Head Semiconductors containing RISC-V processors

= |UF

Research FLORIDA

* T-Head 4 core, TH1520 SoC now dubbed “GhostWrite”, allowing hackers access to
read and write physical memory and execute arbitrary code

* Bad Actors can take over the SoC and hijack the host, the vulnerability lies in faulty
instructions in the RTL chip design

* Given the instructions are “baked” into the design,
silicon, it cannot be fixed with a Software update CSQD d

GhostWrite

mN N&

Comparison of Traditional Methods

nnnnnnnnnnn

Research ‘ FLORIDA

____ Method | Model | Limitation __ oy

Formal property White-box False positive, state
verification explosion, low

accuracy

Symbolic, Concolic White-box Path explosion, low Low Moderate
accuracy

Genetic Algorithms White-box Reliance on Low Moderate

structural features
ML White-box Reliance on High Moderate

structural features

* Traditional methods presuppose white-box knowledge
— A major pitfall given today’s SoC supply chain context

onal HVV Vel

— Unable to consider HW-SW interactions

N

Promising Solutions: Test Generation for Security Lo | UF

Research ‘ FLORIDA

To keep up with increasing design complexity

To deal with realities of the supply chain

To detect vulnerabilities and desired coverage quickly

To guide pattern generation effectively through feedback
To maximize coverage

To account for HW-SW interactions

Outline

e Part 1: Fuzzy/Fuzz Testing

= = mm mm m o = =

Background, High-Level Overview, Proposed
Approaches, Results, Comparison, Summary

nnnnnnnnnnnnnn

UUUUUUUUU

Evolutionary Fuzzing Approach

vvvvvvvvvv

nnnnnnnnnnnnn

An automatic testing technique

Uses invalid/semi-valid/valid data as application input

Targets numerous boundary/corner cases

Used to generate and feed the target program with plenty of test cases to trigger bugs
Ensures the absence of exploitable vulnerabilities

Widely used in software domain for bug detection

Seed selector | Mutation Algorithm | Instrumented Feedback
‘a/gor/t/zm ‘(d/ctiana/y) w/ Observation points | Gathering
= Seed Mutation Design/Program Observation
Seed :P[- : >[= coverage
(initial random) Selectlonl Engine) under Test (Output) |
T selected seed mutated input feedback

Typical Fuzzing Technique Overview

Current Fuzzing Practices for Hardware Verification F.

UUUUUUUUU

Research ‘ FLORIDA

Direct Fuzzing on Hardware

Ref. Laeufer, Kevin, et al. "RFUZZ: Coverage-directed fuzz testing of RTL on FPGAs." 2018
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). ACM, 2018.

Apply mutated inputs to HW directly
Software simulation
FPGA based emulation
Advantages

Faster (emulation) and scalable
Effective for HW/SW co-layer verification

Input
Buffer

:

Coverage
Buffer

Stream

Unit
/

-

CPU i1 Shared Memory

:

__

Fuzzer wI FPGA-acceIerated Simulation

Disadvantages Motivation: Utiliz

ing a real-time HW Emulation Platform for Fuzzing

Limited permissions in some low-level

@ compile / Instrument

Fuzzing Hardware as Software

HW Simulation Model

HW RTL O SW model by Verilator
Fuzz SW model
Crashes [Vul. Detection
Advantages
Less time required for initial preparation
Disadvantages

Emerging vulnerabilities due to translation

l_@ </>
|

HDL

Compiler

22).2022.

I {é} DUT Model
1 ~Y

Hardware Simulation Model

Generic 1
Testbench !

Input Queue

Coverage-Guided
Greybox Fuzzer

~

ol

Mutate Tests

< Save Coverage
Increasing Tests I

e@ \)’@
2

Test

I

Discard Un-
interesting Tests
Save Crashes

Ref. Trippel, Timothy, et al. "Fuzzing hardware like software." 31st USENIX Security Symposium (USENIX Security

16

Research ‘ FLORIDA

Experiment: RTL Code with Vulnerability

1 module locked register example

2 B(B B CWE-1234: HW Internal or Debug Modes Allow Override of Locks
3 input [15:0] Data in,

4 input Clk,

5 input resetn,

© input write, .

7 input Lock, } alw:ftys @ (posedge Clk or negedge resetn)

-] 32 Hbegin

5 input scan_mode, 33 if (~resetn) // Register is reset resetn

9 input debug unlocked, 34 B begin
10 output reg [15:0] Data out =il Data out <= 16'h0003;
11 Ly, 36 end
12 237/ else if (write & (~lock status | scan mode | debug unlocked))
.. 38 H Reglster protected by Lock bRt i1nput, overrides supported
13 reg lock_status; 39 E 5 /(3|for chn mode & deug unl kedp -
e 40 & begin _ _
15 always @ (posedge Clk or negedge resetn) 41 Data out <= Data in;
16 Hbegin 42 end
17 if (~resetn) // Register is reset resetn 43 else if (~write)
18 = begin T begin
19 lock status <= 1'b0; N REiEe: pal = Jod. oUEs
20 | end - - end

47 ‘end

21 else if (Lock) 48 endmodule
22 H begin
o, L = When lock bit is set, memory overwrite by enabling scan or debug
25 else if (~Lock) mode
26 H begin
2 lock status <= lock status;
A - end
29 ‘end

Experiment: Security Property FyC: | UF

UUUUUUUUUUU

Assume: Data write enable bit is never been set in any previous cycle
Data write happens and lock bit set set in a cycle
Provided written data and data intended to be written next are not same

Check intended data to be written in figure goes to the output port
Assertion failure happens!!!!

Cycle 1 Cycle 2 Cycle 3

\ \ \

assert(!(lockl == 0 && writel == 1|&&| lock2 == 1|&& write3 == 1 && flag == 1 && top->Data_in == top->Data_out)|);

Experiment: Fuzzing Result

Research ‘ FLORIDA

locked_register_example)

— process timing overall results
run time : @ days, @ hrs, 24 min, 50 sec cycles done : 6782
last new path : n/a (non-instrumented mode) total paths : 1
last uniq crash : 0 days, © hrs, @ min, @ sec uniq crashes : 293
last uniq hang : none seen yet —uniq hangs : 9
— cycle progress map coverage
now processing : 0% (0.00%) map density : 0.00% / 0.00%
paths timed out : 0 (0.00%) count coverage : 0.00 bits/tuple
— stage progress findings in depth
now trying : havoc favored paths : 0 (0.00%)
stage execs : 207/256 (80.86%) new edges on : 0 (0.00%)
total execs : 1.74M total crashes : 293 (293 unique)
exec speed : 1159/sec total tmouts : © (@ unique)
— fuzzing strategy yields path geometry
bit flips : 0/120, 0/119, 0/117 levels : 1
byte flips : 0/15, 0/14, 0/12 pending : ©
arithmetics : 0/837, 0/563, 0/277 pend fav : 0@
known ints : 0/66, 0/276, 0/421 own finds : ©
dictionary : 0/0, 0/0, 0/0 imported : n/a
havoc : 292/1.74M, 0/0 stability : n/a
trim : n/a, 0.00%

[cpu@Bd: 51%]

293 Unique crashes identified in 24 minutes!

Our Proposed Framework
SoCFuzzer

UNIVERSITY of

20

nnnnnnnnnnnnn

Proposed Direct Fuzzing Framework: SoCFuzzer

| SoC Vulnerability Detection using Cost Function enabled Fuzz Testing

Scalable and automated framework for SoC security verification
Develop evaluation metrics, cost function, and feedback for runtime update of mutation strategies
Global minima of cost function [J Vulnerability detection

Implementation [J Emulation board: Genesys 2 Kintex-7 FPGA Development Board, SoC: 64-bit RISC-V Ariane
HW debugging: Xilinx Integrated Logic Analyzer (ILA), Monitoring: JTAG, OS: Linux, Mutation Engine: AFL Fuzzer

(Test C Code}»{RISCVGonpiler] < @fﬁ)ﬁm@‘*f

‘:,[Integrated Logic majH
— - y Binary (elf] l
E:-‘_’[AFL Fuzzer] (6Fc) [Compare

Sipng o [Runtlmeoutpult]_T l
A (' Seed (Cost Function (Fo) [— winerability detected
HPGA emulation framework Host Machime

Ref. Hossain, Muhammad Monir, et al. "SoCFuzzer: SoC Vulnerability Detection using Cost Function enabled Fuzz Testing." 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). |IEEE, 2023.
21

SoCFuzzer Evaluation Metrics ‘

UUUUUUUUUU

Obijective: guides fuzzing to generate smarter-than-random test inputs based on metrics
Few metrics based on security properties

Evaluate the quality of mutated inputs
Estimate the chances of hitting a potential malicious behavior

Faster convergence by a feedback utilizing metrics [faster triggering the vulnerability

r—1 T h,(ZJ Zk)
Randomness (M,) — == 7’(7"— 1)]Zlk_zjil Li i
(M,) — == Zg zkzl(h(or i ki0n i))
Uj
Input Coverage (M)) | fo= SN—d
Target Output Behavior (M,)) |fo= 1 Z (s ==03)
. k=1

22

SoCFuzzer Cost Function and Feedback

FC:I_(I_fr)‘i—fa—}—fc—{—fo :n—l
n

1
__(fa+fc+fo_f'r‘)
n

Cost Function

« Developed based on proposed fuzzing evaluation metrics, M1, M2, M3, and M4
« Fuzzing objective: minimizing cost function (global minima [J vulnerability triggered)
« 1 Metrics [better fuzzing [faster vulnerability trigger (global minima)

Feedback crip— e _ _Fea—Fa

« Positive CFIR [better fuzzing [Continue mutation w/ the same mutation strategy

T To —T1

* Negative CFIR [1 Mutation against objective [1 Change the mutation strategy
« CFIR estimated after each frequency of feedback generation (FREQy,) iterations

0es Distracted
Target

// Mutation strategy changed

Cost Function
& Feedback

o
o
a

Realization

Cost Function (CF)
=) o
w S
[4)] a

©
V)
o

256 511 766 1021 1276 1531
Number of Executions

[N

Global Minima
(Vulnerability Triggered)

1786 2041

Iy Ty

23

Experimental Setup Vs

Vulnerabilities in Ariane SoCs

UUUUUUUUUU

Vulnerability Location Triggering Condition Output Behavior

Leaking the AES secret key through the common . : CVE-2018-
SV1 bus in the SoC AES IP Specific plaintext AES Key leaks to PO 8922
sy | o e e e SSRQQ.QT AES [Pincipher | spq |p Specific plaintext Ciphertext not resulted in time| AES-T500
SV3 ISRl A ELC e RDEEERINS | gry (dec) imm#0&rs1#0 lllegal instr exception raised | CWE-440
FENCE.I instruction
SV4 |Execute machine-level instructions from user mode| CPU (dec) Execute "mret” instruction No exception exhibited CWE-1242
SV5 Access to CSRs from lower privilege level Register file |mstatus reg r/w from user space No exception exhibited CWE-1262
Cost Function Development Input Output Effective
Data Length Signal Length Length {(N-d)
SV1 1 Plaintext 128 bits Ciphertext 128 bits 128 bits
SV2 1 Plaintext 128 bits Control Register 32 bits 128 bits
SV3 0 Instruction 32 bits Exception Raised N/A 32 bits
SV4 0 Instruction 32 bits No Exception N/A 32 bits
SV5 0 | CSRinstruction | 32 bits No Exception N/A 12 bits
n—1 1

: FC,SV1: - _; Z Z(h r—1,k> 'rk)
Example Cost Function for SV1 j=1bz £~

1 m
— Z Bk —— AESkey) -
iz k=1

j=1k=j+1 P 24

Results Analysis

vvvvvvvvvv

UM\

time with an inefficient mutation strategy

SoCFuzzer with the feedback CFIR outperforms the conventional fuzzing without our proposed feedback
An optimum value required for FREQy, a low value [insufficient samples to evaluate, high value [] too much

For all quality of seeds, SoCFuzzer with the proposed feedback shows excellency in faster triggering vul.

o 1 t — SoCFuzzer w/ Feedback (FREQwm=3) SoCFuzzer w/ Feedback (FREQw=10)

c—=u 0.9 — SoCFuzzer w/ Feedback (FREQ:=5) SoCFuzzer w/0 Feedback

=0.8 ’r\ ,‘"l

o I 1

E 0.6 Vulnerability Triggering ""“_:’_’_Z iLZZﬁlﬁ'.ZﬁﬁﬁlIﬁlﬁﬁﬁﬁ’.ﬁﬁﬁf_ﬁi:ﬁf,ﬁfZ'f.ff.ﬁﬁ'fff.iﬁlﬁ', ~~~~~~~~~~~~~~~

+ 0.5 Point (Global Minima) > ~-..._‘_‘_Zi'.1‘_1'_'j_j1: ~~~~~~~~~~~~~

304 R
0.3 >

1 40 80 120 160 200 240 280 319
Number of Executions

Cost Function and Feedback Analysis in Detecting Vulnerability (SV3)

25K |
22.5K

n 20K ® L L L L 2 C L .
P . .
S17.5K | ~® SoCFuzzer with Feedback - SV1 SoCFuzzerwith Feedback-SV2 .=~ .
§ 1;2& =&~ SoCFuzzerw/o Feedback - SV1 -#- SoCFuzzerw/o Feedback - SV2 f EH';Z%?&Z‘;ES“
!E 10K :““-§_‘i_¥ * o . Ak :\/ o —
g 7.5K ‘
S 5K \ —e

2.5K

0 3 3 5 6 7 8 9

FREQ,
Performance of SoCFuzzer with Feedback for Variation in FREQfb

1 A
S
g 0.9
=0.8 |
2 ‘
80.7

u‘

E—_—1'
Sv2
Sva
Sv5

Ly mmwmmh

Eo 6 H, V""““W‘ WMN!IN Jb;’*" ini ”.") H’i 'iﬂ«wu fl‘ o

3
805

Lo — Vulnerablllty Trlggermg B

0.4
1

500 1000 1500 2000 2500 3000 3500
Number of Executions

3895

Cost Function Analysis in Detecting SV1, SV2, SV4, and SV5

Performance of SoCFuzzer for Various Quality Seeds

25

=8~ SoCFuzzer with Feedback - SV4 More execution w/0 feedback
-~ SoCFuzzerwith Feedback - SV3 & =
SoCFuzzerw/o Feedback - SV4 LT
-e- SoCFuzzer w/o Feedback - SV3
e——— —————————————————————— >
18.75 25 31.25 37.5 43.75
HD (%) of Seeds

Results Analysis

Summary Results: Vulnerability Detection | Index HD(seed FREQp, No. of Executions

For optimum FREQy,, SoCFuzzer detects all AL Fuzzing w/o CF_FB SoCFuzzer

vul. in less time w/ variety quality of seeds

SoCFuzzer saved at least 50% of verification SV1 62.50% 7 10968 2862 73.91%

time SV2 | 62.50% 6 21319 2999 |85.93%
SV3 25% 6 361 180 50.14%
SV4 | 43.75% 5 415 162 60.96%
SV5 | 66.67% 6 968 275 71.59%

HD(seed, VTI): HD of Seed and Vulnerability Triggering Input CF_FB: Cost Function enabled Feedback FREQy,: Optimum FREQy,

Compare Fuzzer Frame- Target Feedback to Mutation Engine Golden
w/ Engine work Model
HW _ RFUZZ HW Fuzzer FPGA Emu| IP Designs MUX coverage Yes
ZUZZIng h DifuzzRTL HW Fuzzer FPGA |CPU Design Control-register Code coverage Yes
pproac Hyperfuzzing SW Fuzzer SW Sim | SoC Design NoC, Instruction and Bitflip Monitors Yes

Statement, toggle, branch expression,
TheHuzz HW Fuzzer HDL Sim |CPU Design condition, FSM Yes

Modified HW Fuzzer

SoCFuzzer [using CF and Metrics| FPGA | SoC Design |Cost Function based (vulnerability-oriented) No
26

Improvement Scopes in SoCFuzzer FyCo | UF

Efficient Seeds for HW-oriented Fuzzing

« Optimization and selection of seed(s)
* Potentially less dependency on initial seed

27

UUUUUUUUUU

Research

Taint Inference-enabled Fuzzing o |UF

Proposed Fuzzing Framework: TaintFuzzer

Scalable and automated framework for SoC security verification

Leverage taint propagation for more HW-oriented fuzzing (mutation)

Leverage taint inference for generating smart seeds from initials

Utilize taint inference in cost function and feedback development for efficiency in HW fuzzing
Proposed cost function and feedback for runtime update of mutation strategies

Vuinerability Detected

/ﬁj Taint Inference | || _ _ 2= Yy Detected _ . find —

HOST Machine FPGA Emulation Platform

Extensive HW- Gray-box Model |! = <= , | i —
centric Mutation Verification 128 % [Logic Analyzer]‘_" | SoC Driving Program]
| gg l | \Debug 1114,
Q | 58 - | [1Channel =
| = Behavior Taint , »- |SoC
a | Match? Inference | YT
| 5 ’ | Communication
| | Channel (™ ypdate CostFunction)

28

Smart Seeds Evolution, Cost Function and Feedback F

Smart Seeds Evolution

Definition: smart seeds expedite mutations in triggering vulnerability

arbitrarily
Inefficient seeds (1 increased verification time

Is considers impact on HW behavior and proximity of malicious behavio

Smart seeds used for longer deterministic mutation (efficient)

Challenging to select an initial seed: Can’t be selected in a trivial process or

Smart seeds derived based on proposed metric HW Seed Impact Factor (I;)
Randomly mutated inputs from initial with seed w/ higher Is [smart seeds

r

HW Seed Impact Factor |7, =

ZWS k]+{1—_zh(0rk,0t k)}

= X 2

mf“ ‘%F ‘
Research FLORIDA

Z Z SCag| Feedback

j=1k=j+1

Cost Function |F3 —1‘2 [_+{ N 1)

CDCF =

Z(F%_

ck—1)

Ny
+{1 — ; Z_: h(or,k,0t,k)} + 2_N]

29

Results Analysis

Summary Results: Vulnerability Detection JEEEEIEES

NWNE nnnnn
Fyi | UF

Research FLORIDA

Iterations for

No. of Iterations

Reduction of Verification Time w.r.t.

g Smart Seeds TFNFE SoCFuzzer TFcpcr TFNFE SoCFuzzer
Only few iterations required to mutate smart | "' ' 3 [1610 784 629 56.02% 9.69%
Sv2 10 4 64 808 269 197 67.70% 2.97%
Seeds (~6X tO ~1 2X) SV3 10 6 88 4789 2548 1945 57.55% 20.21%
Saved at least 32% of verification time sva s s 34 454 364 m 32.56% 15.93%
compared to fuzzing w/o proposed feedback | svs 5 5 3 413 237 181 48.69% 10.54%
SVo6 20 7 243 13311 6389 5261 58.65% 13.85%
Saved 11.68% verification time compared to | ;3 IS 5063 3186 7597 SLoT S 600
SoCFuzzer framework USV1 20 7 225 N/A N/A 10783 N/A N/A
USVv2 30 5 327 N/A N/A 7311 N/A N/A
USV3 10 5 83 N/A N/A 1147 N/A N/A

#SS: No. of Smart Seeds fr: Frequency of Feedback Evaluation.
T Fn r: TaintFuzzer w/o proposed Feedback T F¢ pcp: TaintFuzzer w/ CDCF.

TaintFuzzer also detected few unknown vulnerabilities in the Ariane SoC

Vulnerability

Location

Triggering Condition

Output Behavior

Allow retrieving last ciphertext of encryption operation for AES

USV1 module in SoC AES IP Specific plaintext Read last ciphertext
USV2 | Release intermediate result of encryption as final ciphertext | AES IP Specific plaintext In(’:cﬁ)r;réertcg)a(\;ce
USV3 | No exception while executing an illegal instruction (MULH) | CPU (Dec)| (rd =rs1 vrd=rs2) | No exception raised

31

Improvement Scopes in Prior Frameworks

When to evaluate a new feedback?

 Auto tuning of frequency of feedback evaluation

llllllllllll

32

SoCFuzzer+ Implementation FW

Rcsearch ‘ FLORIDA

Reinforcement learning guided emulation based framework developed based on SoCFuzzer

RL utilizes cost function-based feedback to tune mutation strategies and when getting feedback
Increasing cost function [J RL penalty, decreasing cost function [RL reward

Vulnerability trigger: Global minima (based on properties) or local minima of cost function

SoC: RISC-V-based 64-bit Ariane SoC, HW debugging: Xilinx Integrated Logic Analyzer (ILA)

Emulation board: Genesys 2 Kintex-7 FPGA Development Board

A

[TestCCode]—»[RISCVCompiler] [Seed] _[Metrics]

bitstream f FPGA Syntw

L XILINX
Bna elf
_ Aol naly (el) _ JIAG | Integrated Logic
- AFL FuzzerL target | Analyzer
S/ ﬂa/s
""" Action) rUpdatthabIe] &
lmux

\ 4 —
Cost | 6r)‘ Feedback Runtime output .
"[Functlon (Fc) (CFIR)]—»[Reward (R)] [P] RISCV
—- Ariane SoC
Databaseof W RTL
Database of vulnerability detected UART (RTL)

FPGA emulation framework Host Machime

A

33

SoCFuzzer+ Al Model

RL Learning

An agent learns to interact w/ environment to
maximize cumulative reward

Training agent to make action towards a goal agent () ¢ é
Action results in feedback as reward or penalty

action

> C’;

Envionment a o, State (S)

Péf“ ‘% ‘
Research FLORIDA

o Th
reward (R) -

State Set S, : {Aml,Amg,Amg,Amg} S = {Sfmm, '--7S'L'78'L'—|—17 sresevery

Sfma:c} fmz'n S 1 S fmax

Change in metric values define the state

A state represents a frequency of feedback evaluation and a
mutation strategy

A= {Ay, Ay, Agy Ay, oo A}

— {a’m7ffz'}

Sz’ — {(S’La 1)7 ('Sza 2)7 wrsgy (‘Szaj)}

ffmzn S ffz S ffmax

An action set is chosen from a particular state for a particular number of iterations in fuzzing
Action set consists of a particular mutation strategy and frequency of feedback evaluation

34

SoCFuzzer+ Al Model

2 2 2

State Transition Function

Nstates = 77y X A7 X A1 * At ~ (ADA

2 16

mf“ ﬁan ‘
Research FLORIDA

Nt _ (N,S’tzates)

Determines how likely an against move from one to another state

Implement stochastic state transition for a new module, i.e., initially randomized Q-table

Utilize mature Q-table over time for more deterministic state transition

Action chosen best on the highest reward in Q-table for the current state

Agent Rewards

Provided based on cost function improvement rate (CFIR)
+ve CFIR [1 Reward, Max reward] CF minima
Negative CFIR [Penalty (negative reward)

Q-Table

.
— s

T,

r3,
7,

\

CFIR <0
CFIR=0VACFIR=O0
CFIR > 0,r3 > 19
M4=0ANCFIR =0

Q-table updated after certain iterations Q"(S,, A) = (1 — a)O(Sy, Ap)+
(Rt +vmax Q(Se41, Ar)

a [Learning rate

y [discount factor

35

Results Analysis Vs

UUUUUUUUU

Decreasing iterations significantly for triggering a vulnerability over the trial in RL model
E.g., in worst case, first vulnerability detection in 20K, decreases to 15K in second trial

AES Module Register File
& 20000 0 800
S 15000 o o 600
*é‘ 10000) m 400
£ 5000) 3 200 . .
= 0 #* O
2 3 4 1 2 3 4 5
Sequence of RL Trials Sequence of RL Trials
CPU Decoder MMU Module
600
4 & 600
O 400 O
-l(-c- -l&s' 400
p . b .
S 200 8 200
#* 0 * ’ —
2 3 4 2 3 4 5
Sequence of RL Trials Sequence of RL Trials

Performance evolution over the trials while verifying the Ariane SoC modules

36

Results Analysis Fyeo |UF
Research FLORIDA
Summary Results: Vulnerability Detection Index Number of Executions (Average) Speed Up
- . . £ SoCFuzzer [32] SoCFuzzer+ Sl S2
Saved at least 47% of verification time A
. SV1 23489 10832 9161 61.00% 15.43%
comparing w/o proposed Al feedback
SV2 21938 8387 6644 69.71% 20.78%
0 . . .
Saved at least 15% of verification time SV3 483 258 190 O —,
comparing to SoCFuzzer framework T — = T
Saved 23% verification time on SV5 478 293 242 4944% 17.52%
average comparing to prior SoCFuzzer SV6 397 226 140 64.82% 38.20%
framework SV7 449 214 172 61.77% 19.78%
Detected three unknown vulnerabilities SVE - 27T 12 2 84.85% 74.40%
USV1 N/A N/A 16392 N/A N/A
USV2 N/A N/A 37163 N/A N/A
USV3 N/A N/A 826 N/A N/A
“FNpNF: Fuzzing w/o proposed cost-function-based feedback and Al model.
Unknown Vulnerability Detection S1: SoCFuzzer+ speedup w.r.t. Fxp N and S2: Speedup w.r.t. SoCFuzzer.
Index Vulnerability Location Triggering Condition Output Behaviour Reference
USV1 A Trojan allows exposure of the previous cipher for AES module in SoC AES IP Specific plaintext Read last ciphertext CWE-401
USV2 A Trojan leaks intermediate result as final cipher AES TP Specific plaintext Intermediate ciphertext — [4]

USV3 (SR read access to undefined High Performance Counter (HPC) Register File hpmcounter read No exception raised CWE1281
B TS ¥ W A (&l . X7 1 o e 37

lllllllllll

Outline Fyi-
-

a Part 2: Penetration (Pen) Testing

Background, Definition, High-Level Overview,
Example Framework, Results, Summary

= = e e e o e = =

38

Research FLORIDA

Security Verification by Hardware Penetration Test F¥ - |UE

SHarPen: Security Verification by Hardware Penetration Test

n DB of
y dii I Vulnerabilltles.
Initial/Update Generate Evaluate -
start —p sv(arrpn —»| mutated Input —»| Titness <_| e
- policies
v input

P2 Cost function —]
. . put gen/update | |
(simulation/FPGA-based prototyping) response &7 =

* High level overview:
— Cost function driven grey box hardware penetration testing framework
— Both simulation and emulation compatible
— Self-evolutionary test pattern generation through Binary Particle Swarm Optimization
— Capable of triggering hardware vulnerabilities even with remote (software) access
— Applicable across a wide variety of threat models

* Fundamental insight[Security policies can be represented as mathematical cost
functions such that

— finding global optimal will trigger the vulnerabilities (if they exist) that violate them

All rights reserved 39

Research

SHarPen Requirements and Steps Co|UF

* Requirements:

— PR1: The tester possesses a high-level knowledge of potential vulnerabilities and
their high-level impact on neighboring signals/modules.

— PR2: The tester can observe a sub-set of signals of the design that might be
impacted by the vulnerabilities (grey-box).

— PR3: The tester can control a sub-set of relevant signals of the design to the
vulnerabilities (grey-box).

Steps:

T

% g « Translate « Apply test «Observe «Use «Use - If global

S - security patterns to relevant observed feedback optima is

o S policies to exercise quantities values to to reached,

:(EU o cost the DUT (e.g.,CSRs evaluate generate vulnerability

functions Simulate , internal cost new test is detected.
- or emulate signals) function patterns
the design
\. J AN Adrightereseved J \. J N\ J

Step 1: Translate Security Policies

Translate: Translate security policies to grey box cost functions

e Example 1:

\\\\\\\\\

vvvvvvvv

nnnnnnnnnnn

— Detecting information leaking + DoS trojans in AES
— No structural/implementation knowledge assumed about the AES (Grey-Box).

Security policies

Asset should not show up at:
» Read/write channel (1;,:4 /
Waqtq) Of Shared bus
* Memory locations (memg 4
accessible by untrusted IPs
» Handshaking signal (vo_ ;)
should be asserted at the enc
encryption within few clock
cycles.

p

All rights reserved

(.)

F = alHD(rdata,SC)
a, HD(Wg4tq,SC)+

a3 YHD(mem 44, SC) +
C(4HD (vout' O)

N\ J

HD:= Hamming Distance
SC:= Secret Key; a= C. Parameter

Step 2 and 3: Exercise and Monitor - |UF

* We propose two variants of SHarPen

UUUUUUUUUU

Research FLORIDA

— One is simulation compatible, other emulation compatible

DFG/CFG of user Ariane
space program SoC RTL
Bit patterns Decode of

= Y
encoding Bit patterns Verilator | output
bit monitoring

pattem| | baremetal -€lf | verilated
mod'fyL Lp{ Compiler —p EMlate
assemb'y Ariance respone
NS : relevant observability (feedback)
1— cost function <

s~ gen/update

Simulation Framework
* RTL is converted to equivalent C++ model

* The user space program is run on the software
model (Exercise)

* The .vcd file is parsed to observe relevant signals
(Monitor)

Synthesis & PnR & bitGen Host PC
= >

S program

Target 4_| (:) -

FP%A bitstream ﬁ j =
upload = &

baremetal |=—{e—
Debugport‘ program — mutate

access ®
@ th “}}’Eg ' cost function

> gen/update

Ariane SoC RTL
Instrumented

Emulation Framework

* RTL is instrumented, synthesized and then
prototyped on an FPGA.

* The user space program is directly run on the
hardware (Exercise at-speed)

* Monitor relevant signals through Host PC via
debug port (Monitor)/ ILA core

All rights reserved 42

Péf” *ﬁ!m

Step 4 and 5: Evaluate and Mutate

Research ‘ FLORIDA

* For example 1: I

— If there’s a violation of security policy
— At least one term becomes 0

F = ayHD(ryaeq SC) + ay HD(Wygeq SC)+ @3 LHD(Memgqrq,SC) +

CX4HD (vout’ 1) |
—> set to 0 when any of the terms is O SR

Figure: BPSO finding minima of a function *

*Source: Wikipedia

* Insight:
— This becomes a mathematical function minimization problem
* Binary Particle Swarm Optimization (BPSO) is a viable solution
— No training required
— Adaptable to binary input vectors
— Less prone to getting stuck in local minima.

All rights reserved 43

Step 6: Detect

* Mutate test patterns (Baremetal C code for example 1) until convergence.

a,HD (vo.;, 1)

F = a;HD("34¢q,SC) + ay HD(Wggtq, SC)+ @3 XHD(memgqeq, SC) +

Péf” *%

Research

‘ FLORIDA

* If there’s a violation of a security policy, corresponding to current generation
of swarm[] At least one term becomes 0

— F evaluates to O

— The vulnerability is triggerable/exploitable with current input
— Vulnerability exists and is detected

DB of

not aetecte
Initial /Update Generate Evaluate
start —p sv(a?n ._/’—rrrumteqmput —> fitn&ss

Vulnerabiliti
sy

—

DUT
(simulation/FPGA-based prototyping)

SHarPen

All rights reserved

policies

Cost function
gen/update g

44

Research FLORIDA

Summary of Results - |UF

successful in detecting vulnerabilities
— Grey box cost functions

— Emulation framework provides nearly 15x
improvement in time required
— Emulation offers greater scalability

* Key takeaways: : T
— Both simulation and emulation frameworks o e B 5 e
1 iy

(Triggering the
»-10 e
e vulnerability)
|m.15

-20

[RY

0 50 100 15C
Iteration

(€) A~ sv2

60
=50
c
"’ 40

-9 30

[y
CUIRUNOUIIL UNONI L UIN OUT R, UIN OUT I, U1 N

Fast Convergence
to global minima

Evaluated cost function per each particle

B (Triggering the
- - ac el e :ig vulnerability)
— BPSO offers quick and reliable convergence ; R
to g|0ba| mlnlma L‘L‘.JJ.‘ LL,,A . AL.,I .dm,m m:;go T ——
— User configurable parameter a has minimal
impact on framework performance_ Figure: Finding Global Optima of Cost Function

Required time for Vuln. Detection

Targeted vulnerability [Sv1 Sv2

Simulation 3050-3150(s) 3050-3150(s)
FPGA emulation 180-190(s) 190-200 (s)

All rights reserved 45

Summary

» To keep up with increasing design complexity

©

» To deal with realities of the supply chain

©

» To detect vulnerabilities and desired coverage quickly

©

» To guide pattern generation effectively
« To maximize coverage

©

* To account for HW-SW interactions

g
W gy
W

Research 1 FioRIDA

FPGA emulation compatibility enables
at-speed execution of test-patterns

Requires minimal knowledge of internal
signals

Utilizes security relevant feedback for
intelligent test generation

N N N

Utilizes security-oriented metrics]
Fuzzer running natively on DUT]

N

46

Conclusion

g@

Problem

Solution

Vast SoC threat surface.
Traditional verification
methods do not scale well
for complex designs

Combination of Fuzz and
Pen Testing offer promising
alternatives with better
scalability and
generalizability.

Potential

Have already been
successfully employed in
detecting vuln. in open-
source benchmarks

nnnnnnnnnnn

47

