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Semiconductor 
Market Size

$573.4B
Projected to reach 
$1,380.8B by 2029 

(CAGR 12.2%)

SoC Market Size

$159.8B
Projected to reach 

$234B by 2028 
(CAGR 8%)

PCB Market Size

$82.4B
Projected to reach 
$140.0B by 2032 

(CAGR 5.6%)

SoC Market Size

SoC market value is growing thanks to AI accelerators, 
increased connectivity, and diversity of applications



Microelectronics 
Security (2030)

$500M+
Includes IP, SoC, and 

PCB security solutions

EDA

$14.0B
Projected to reach 
$25.0B by 2032 
(CAGR 9.1%)

EDA Market Size

EDA solutions are growing to address the need to 
power and performance and move to 2.5D and 3D

$1B+ 
Verification market



Modern SoCs: Security is a Challenge
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Aggressive time-
to-market 

Tens of IPs from
3P vendors

Tens of billions
transistors

Many 
custom/legacy/

security 
functionality

Designed around 
the globe

Many security
critical assets

Ensuring security is a challenge

On-chip device keys 

(developer/OEM)

Device configuration

Manufacturer Firmware

Application software

On-device sensitive data

Communication 

credentials

Random number or 

entropy

E-fuse, 

PUF, and more…
Image Source: https://novelbits.io/chipset-vs-module-bluetooth-le-solutions-the-ultimate-
guide/



Growing # Vulnerabilities – Verification is a MUST
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� Fault Injection
� Privilege Escalation
� Trojan Insertion
� Trace Buffer
� EM Side-Channel 
� CLKSCREW
� Denial-of-Service
� Vector Rewrite 
� Rowhammer
� Power Side-Channel
� Direct Memory Access
� BranchScope
� Bitstream Encryption 

Cracking

� Plundervolt
� Access Control
� Meltdown and Spectre
� Machine Learning
� Information Leakage
� Trusted Execution 

Environment Breaking
� Reset and Flush
� Branch Shadowing
� Bitstream Tampering
� Reverse Engineering
� Timing Side-Channel
� Integrity

Strong Algorithm & 
Architecture 

Weak Implementation &
Execution



Security: An Indispensable Aspect of Verification
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• In addition to functional, performance requirements, security requirements have recently 
emerged important concerns:
‒ Lack of understanding of security vulnerabilities by designers
‒ Recent reports of critical hardware security vulnerabilities in commercial products

Fault injection, 
physical 

side channels.

Software exploitable 

hardware vuln.

Hardware 
Vuln.

Information leakage, µ-architectural side channels, fault injection, hardware trojans, etc.… 

Recently reported security vuln. in commercial SoCs



Need for Dynamic Verification: A Case Study
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• In a RISC-V SoC 
‒ There may be up to 3 privilege levels: M, S and U
‒ Privileged access is protected through a complex interplay between hardware and 

software

Interconnect

Peripheral
Peripheral

Peripheral

Peripheral
Peripheral

Peripheral

Fetch unit
Decoder

Execute unit

Program 
counterExcept 

handler

Reg file

CPU

Hardware

Boot/Startup code 

User application

Software

Assume: M and U-modes are implemented
All rights reserved



Need for Dynamic Verification: A Case Study
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• In a RISC-V SoC 
‒ When an illegal access is detected, hardware raises an illegal instruction exception
‒ The hardware program counter will jump to address stored in register mtvec

→ mtvec needs to be configured properly
‒ Software trap handler code will handle the response

• Hardware-software interplay is indispensable for protection of assets.

Assume: M and U-modes are implemented, baremetal scenario
All rights reserved



Alibaba’s T-Head C910 RISC-V, April 2024
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• German Center for Information Security has found serious security flaws in 
Alibaba’s T-Head Semiconductors containing RISC-V processors 

• T-Head 4 core, TH1520 SoC now dubbed “GhostWrite”, allowing hackers access to 
read and write physical memory and execute arbitrary code

• Bad Actors can take over the SoC and hijack the host, the vulnerability lies in faulty 
instructions in the RTL chip design

• Given the instructions are “baked” into the design, 
silicon, it cannot be fixed with a Software update 



Comparison of Traditional Methods
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• Traditional methods presuppose white-box knowledge
‒ A major pitfall given today’s SoC supply chain context

• Vast majority of traditional HW verification methods are not dynamic
‒ Unable to consider HW-SW interactions

Method Model Limitation Scalability Automation
Formal property 

verification
White-box False positive, state 

explosion, low 
accuracy

Low Low 

Symbolic, Concolic White-box Path explosion, low 
accuracy 

Low Moderate

Genetic Algorithms White-box Reliance on 
structural features

Low Moderate

ML White-box Reliance on 
structural features

High Moderate



Promising Solutions: Test Generation for Security
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• To keep up with increasing design complexity

Scalability with Complex Designs

• To deal with realities of the supply chain

Gray-box Methods

• To detect vulnerabilities and desired coverage quickly

High Coverage using Intelligent Tests

• To guide pattern generation effectively through feedback 
• To maximize coverage

Meaningful Security Verification Metrics

• To account for HW-SW interactions

Novel Dynamic Methods

Fuzz 
Test

Pen 
Test
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Evolutionary Fuzzing Approach
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An automatic testing technique
Uses invalid/semi-valid/valid data as application input
Targets numerous boundary/corner cases
Used to generate and feed the target program with plenty of test cases to trigger bugs
Ensures the absence of exploitable vulnerabilities
Widely used in software domain for bug detection

Typical Fuzzing Technique Overview



Apply mutated inputs to HW directly
Software simulation
FPGA based emulation

Advantages
Faster (emulation) and scalable
Effective for HW/SW co-layer verification

Disadvantages
Limited permissions in some low-level

Current Fuzzing Practices for Hardware Verification

16

Fuzzing Hardware as Software

Direct Fuzzing on Hardware

HW RTL � SW model by Verilator
Fuzz SW model
Crashes � Vul. Detection
Advantages

Less time required for initial preparation
Disadvantages

Emerging vulnerabilities due to translation

Fuzzer w/ FPGA-accelerated Simulation

Ref. Laeufer, Kevin, et al. "RFUZZ: Coverage-directed fuzz testing of RTL on FPGAs." 2018 
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). ACM, 2018.

Ref. Trippel, Timothy, et al. "Fuzzing hardware like software." 31st USENIX Security Symposium (USENIX Security 
22). 2022.

Motivation: Utilizing a real-time HW Emulation Platform for Fuzzing



Experiment: RTL Code with Vulnerability
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When lock bit is set, memory overwrite by enabling scan or debug 
mode

CWE-1234: HW Internal or Debug Modes Allow Override of Locks



Experiment: Security Property
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Cycle 1 Cycle 2 Cycle 3

Assume: Data write enable bit is never been set in any previous cycle
Data write happens and lock bit set set in a cycle
Provided written data and data intended to be written next are not same
Check intended data to be written in figure goes to the output port

Assertion failure happens!!!!



Experiment: Fuzzing Result
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293 Unique crashes identified in 24 minutes!
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Our Proposed Framework
SoCFuzzer



Proposed Direct Fuzzing Framework: SoCFuzzer
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Scalable and automated framework for SoC security verification
Develop evaluation metrics, cost function, and feedback for runtime update of mutation strategies 
Global minima of cost function � Vulnerability detection
Implementation � Emulation board: Genesys 2 Kintex-7 FPGA Development Board, SoC: 64-bit RISC-V Ariane 

HW debugging: Xilinx Integrated Logic Analyzer (ILA), Monitoring: JTAG, OS: Linux, Mutation Engine: AFL Fuzzer

SoCFuzzer SoC Vulnerability Detection using Cost Function enabled Fuzz Testing

Ref. Hossain, Muhammad Monir, et al. "SoCFuzzer: SoC Vulnerability Detection using Cost Function enabled Fuzz Testing." 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023.



SoCFuzzer Evaluation Metrics
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Objective: guides fuzzing to generate smarter-than-random test inputs based on metrics
Few metrics based on security properties

Evaluate the quality of mutated inputs
Estimate the chances of hitting a potential malicious behavior
Faster convergence by a feedback utilizing metrics � faster triggering the vulnerability



SoCFuzzer Cost Function and Feedback
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Cost Function
• Developed based on proposed fuzzing evaluation metrics, M1, M2, M3, and M4
• Fuzzing objective: minimizing cost function (global minima � vulnerability triggered)
• ↑ Metrics � better fuzzing � faster vulnerability trigger (global minima)

Feedback
• Positive CFIR � better fuzzing � Continue mutation w/ the same mutation strategy
• Negative CFIR � Mutation against objective � Change the mutation strategy
• CFIR estimated after each frequency of feedback generation (FREQfb) iterations

Distracted
Target Global Minima

(Vulnerability Triggered)Mutation strategy changed
Cost Function 
& Feedback
Realization



Experimental Setup
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Vulnerabilities in Ariane SoCs

Cost Function Development

Example Cost Function for SV1

Index Vulnerability Location Triggering Condition Output Behavior Ref.

SV1 Leaking the AES secret key through the common 
bus in the SoC AES IP Specific plaintext AES Key leaks to PO CVE-2018-

8922

SV2 A Trojan injects a delay in the AES IP in cipher 
conversion AES IP Specific plaintext Ciphertext not resulted in time AES-T500

SV3 Incorrect implementation of logic to detect the 
FENCE.I instruction CPU (dec) imm ≠ 0 & rs1 ≠ 0 Illegal instr exception raised CWE-440

SV4 Execute machine-level instructions from user mode CPU (dec) Execute ”mret” instruction No exception exhibited CWE-1242
SV5 Access to CSRs from lower privilege level Register file mstatus_reg r/w from user space No exception exhibited CWE-1262

Index σ Input Output Effective
Length (N-d)Data Length Signal Length

SV1 1 Plaintext 128 bits Ciphertext 128 bits 128 bits
SV2 1 Plaintext 128 bits Control Register 32 bits 128 bits
SV3 0 Instruction 32 bits Exception Raised N/A 32 bits
SV4 0 Instruction 32 bits No Exception N/A 32 bits
SV5 0 CSR instruction 32 bits No Exception N/A 12 bits



Results Analysis       
      Contd…
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SoCFuzzer with the feedback CFIR outperforms the conventional fuzzing without our proposed feedback
An optimum value required for FREQfb, a low value � insufficient samples to evaluate, high value � too much 
time with an inefficient mutation strategy
For all quality of seeds, SoCFuzzer with the proposed feedback shows excellency in faster triggering vul.

Cost Function and Feedback Analysis in Detecting Vulnerability (SV3) Cost Function Analysis in Detecting SV1, SV2, SV4, and SV5

Performance of SoCFuzzer with Feedback for Variation in FREQfb Performance of SoCFuzzer for Various Quality Seeds



Results Analysis
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Summary Results: Vulnerability Detection

Compare
w/
HW 
Fuzzing
Approach

Index HD(seed
, VTI)

FREQfb No. of Executions Speed
up

Fuzzing w/o CF_FB SoCFuzzer

SV1 62.50% 7 10968 2862 73.91%

SV2 62.50% 6 21319 2999 85.93%

SV3 25% 6 361 180 50.14%

SV4 43.75% 5 415 162 60.96%

SV5 66.67% 6 968 275 71.59%
HD(seed, VTI): HD of Seed and Vulnerability Triggering Input CF_FB: Cost Function enabled Feedback FREQfb: Optimum FREQfb

Index Fuzzer
Engine

Frame-
work

Target Feedback to Mutation Engine Golden 
Model

RFUZZ HW Fuzzer FPGA Emu IP Designs MUX coverage Yes
DifuzzRTL HW Fuzzer FPGA CPU Design Control-register Code coverage Yes

Hyperfuzzing SW Fuzzer SW Sim SoC Design NoC, Instruction and Bitflip Monitors Yes

TheHuzz HW Fuzzer HDL Sim CPU Design
Statement, toggle, branch expression, 

condition, FSM Yes

SoCFuzzer
Modified HW Fuzzer 
using CF and Metrics FPGA SoC Design Cost Function based (vulnerability-oriented) No

For optimum FREQfb, SoCFuzzer detects all 
vul. in less time w/ variety quality of seeds
SoCFuzzer saved at least 50% of verification 
time



Improvement Scopes in SoCFuzzer
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• Optimization and selection of seed(s)
• Potentially less dependency on initial seed

Efficient Seeds for HW-oriented Fuzzing



Taint Inference-enabled Fuzzing
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Proposed Fuzzing Framework: TaintFuzzer
Scalable and automated framework for SoC security verification
Leverage taint propagation for more HW-oriented fuzzing (mutation)
Leverage taint inference for generating smart seeds from initials
Utilize taint inference in cost function and feedback development for efficiency in HW fuzzing
Proposed cost function and feedback for runtime update of mutation strategies

Taint Inference

Extensive HW-
centric Mutation

Gray-box Model
Verification



Smart Seeds Evolution, Cost Function and Feedback
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Smart Seeds Evolution

Cost Function Feedback

Definition: smart seeds expedite mutations in triggering vulnerability
Challenging to select an initial seed: Can’t be selected in a trivial process or 
arbitrarily
Inefficient seeds � increased verification time
Smart seeds derived based on proposed metric HW Seed Impact Factor (Is)
Randomly mutated inputs from initial with seed w/ higher Is � smart seeds
Is considers impact on HW behavior and proximity of malicious behavior
Smart seeds used for longer deterministic mutation (efficient)

HW Seed Impact Factor



Results Analysis
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Summary Results: Vulnerability Detection
Only few iterations required to mutate smart 
seeds (~6x to ~12x)
Saved at least 32% of verification time 
compared to fuzzing w/o proposed feedback
Saved 11.68% verification time compared to 
SoCFuzzer framework

TaintFuzzer also detected few unknown vulnerabilities in the Ariane SoC

Index Vulnerability Location Triggering Condition Output Behavior

USV1 Allow retrieving last ciphertext of encryption operation for AES 
module in SoC AES IP Specific plaintext Read last ciphertext

USV2 Release intermediate result of encryption as final ciphertext AES IP Specific plaintext Intermediate 
ciphertext

USV3 No exception while executing an illegal instruction (MULH) CPU (Dec) (rd = rs1 ∨ rd = rs2) No exception raised



Improvement Scopes in Prior Frameworks
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• Auto tuning of frequency of feedback evaluation
When to evaluate a new feedback?



SoCFuzzer+ Implementation
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Reinforcement learning guided emulation based framework developed based on SoCFuzzer
RL utilizes cost function-based feedback to tune mutation strategies and when getting feedback

Increasing cost function � RL penalty, decreasing cost function � RL reward
Vulnerability trigger: Global minima (based on properties) or local minima of cost function
SoC: RISC-V-based 64-bit Ariane SoC, HW debugging: Xilinx Integrated Logic Analyzer (ILA)
Emulation board: Genesys 2 Kintex-7 FPGA Development Board



SoCFuzzer+ AI Model
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RL Learning

State Set

An agent learns to interact w/ environment  to 
maximize cumulative reward
Training agent to make action towards a goal
Action results in feedback as reward or penalty

Action Set

Change in metric values define the state
A state represents a frequency of feedback evaluation and a 
mutation strategy

An action set is chosen from a particular state for a particular number of iterations in fuzzing
Action set consists of a particular mutation strategy and frequency of feedback evaluation



SoCFuzzer+ AI Model
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Agent Rewards

Q-Table

State Transition Function

Determines how likely an against move from one to another state
Implement stochastic state transition for a new module, i.e., initially randomized Q-table
Utilize mature Q-table over time for more deterministic state transition
Action chosen best on the highest reward in Q-table for the current state

Provided based on cost function improvement rate (CFIR)
+ve CFIR � Reward, Max reward � CF minima
Negative CFIR � Penalty (negative reward)

Q-table updated after certain iterations
𝛼 � Learning rate
𝛾 � discount factor



Results Analysis       
      Contd…
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Decreasing iterations significantly for triggering a vulnerability over the trial in RL model
E.g., in worst case, first vulnerability detection in 20K, decreases to 15K in second trial

Performance evolution over the trials while verifying the Ariane SoC modules



Results Analysis
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Summary Results: Vulnerability Detection

Saved at least 47% of verification time 
comparing w/o proposed AI feedback
Saved at least 15% of verification time 
comparing to SoCFuzzer framework
Saved 23% verification time on 
average comparing to prior SoCFuzzer 
framework
Detected three unknown vulnerabilities

Unknown Vulnerability Detection
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Security Verification by Hardware Penetration Test
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• High level overview:
‒ Cost function driven grey box hardware penetration testing framework
‒ Both simulation and emulation compatible
‒ Self-evolutionary test pattern generation through Binary Particle Swarm Optimization
‒ Capable of triggering hardware vulnerabilities even with remote (software) access
‒ Applicable across a wide variety of threat models

• Fundamental insight� Security policies can be represented as mathematical cost 
functions such that
‒ finding global optimal will trigger the vulnerabilities (if they exist) that violate them

SHarPen: Security Verification by Hardware Penetration Test

All rights reserved



SHarPen Requirements and Steps

40

• Requirements:
‒ PR1: The tester possesses a high-level knowledge of potential vulnerabilities and 

their high-level impact on neighboring signals/modules. 
‒ PR2: The tester can observe a sub-set of signals of the design that might be 

impacted by the vulnerabilities (grey-box).
‒ PR3: The tester can control a sub-set of relevant signals of the design to the 

vulnerabilities (grey-box).
Steps:

Translate

• Translate 
security 
policies to 
cost 
functions

Exercise

• Apply test 
patterns to 
exercise 
the DUT

• Simulate 
or emulate 
the design

Monitor

• Observe 
relevant 
quantities 
(e.g.,CSRs
, internal 
signals)

Evaluate

• Use 
observed 
values to 
evaluate 
cost 
function

Mutate

• Use 
feedback 
to 
generate 
new test 
patterns

Detect

• If global 
optima is 
reached, 
vulnerability 
is detected.H

ar
dw

ar
e

Pe
n 

Te
st

All rights reserved



Step 1: Translate Security Policies
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HD:= Hamming Distance
SC:= Secret Key; α= C. ParameterAll rights reserved

Translate: Translate security policies to grey box cost functions 
• Example 1:
‒ Detecting information leaking + DoS trojans in AES 
‒ No structural/implementation knowledge assumed about the AES (Grey-Box).

Security policies

Asset should not show up at:



Step 2 and 3: Exercise and Monitor
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Emulation Framework

• RTL is instrumented, synthesized and then 
prototyped on an FPGA.

• The user space program is directly run on the 
hardware (Exercise at-speed)

• Monitor relevant signals through Host PC via 
debug port (Monitor)/ ILA core

Simulation Framework

• RTL is converted to equivalent C++ model

• The user space program is run on the software 
model (Exercise)

• The .vcd file is parsed to observe relevant signals 
(Monitor)

• We propose two variants of SHarPen
‒ One is simulation compatible, other emulation compatible

All rights reserved



Step 4 and 5: Evaluate and Mutate

43

• For example 1:
‒ If there’s a violation of security policy

→ At least one term becomes 0

• Insight:
‒ This becomes a mathematical function minimization problem

• Binary Particle Swarm Optimization (BPSO) is a viable solution
‒ No training required
‒ Adaptable to binary input vectors
‒ Less prone to getting stuck in local minima.

All rights reserved

Figure: BPSO finding minima of a function *

*Source: Wikipedia



Step 6: Detect
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• Mutate test patterns (Baremetal C code for example 1) until convergence.

•  

• If there’s a violation of a security policy, corresponding to current generation 
of swarm� At least one term becomes 0
‒ F evaluates to 0 
‒ The vulnerability is triggerable/exploitable with current input

→ Vulnerability exists and is detected

SHarPen

All rights reserved



Summary of Results
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• Key takeaways:
‒ Both simulation and emulation frameworks 

successful in detecting vulnerabilities
→ Grey box cost functions

‒ Emulation framework provides nearly 15x 
improvement in time required

→ Emulation offers greater scalability
‒ BPSO offers quick and reliable convergence 

to global minima 
‒ User configurable parameter α has minimal 

impact on framework performance. Figure: Finding Global Optima of Cost Function

All rights reserved

Targeted vulnerability � SV1 SV2
Simulation 3050-3150(s) 3050-3150(s)

FPGA emulation 180-190(s) 190-200 (s)

Required time for Vuln. Detection



Summary
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• To keep up with increasing design complexity

Scalability with Complex Designs

• To deal with realities of the supply chain

Gray-box Methods

• To detect vulnerabilities and desired coverage quickly

Intelligent Test Pattern Generation

• To guide pattern generation effectively 
• To maximize coverage

Meaningful Security Verification Metrics

• To account for HW-SW interactions

Novel Dynamic Methods

FPGA emulation compatibility enables 
at-speed execution of test-patterns

Requires minimal knowledge of internal 
signals

Utilizes security relevant feedback for 
intelligent test generation

Utilizes security-oriented metrics 

Fuzzer running natively on DUT



Conclusion
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Problem Solution Potential
Vast SoC threat surface. 

Traditional verification 
methods do not scale well 

for complex designs

Combination of Fuzz and 
Pen Testing offer promising 

alternatives with better 
scalability and 

generalizability.

Have already been 
successfully employed in 
detecting vuln. in open-

source benchmarks


