
New frontiers in Security Verification:
Fuzzing and Penetration Testing

Farimah Farahmandi
Wally Rhines Endowed Professor in Hardware Security

Assistant Professor, Dept. of Electrical and Computer Engineering, UF
Associate Director, Florida Institute for Cybersecurity (FICS)

05/17/2024

Outline

2

SoC Security Verification

Part 1: Fuzzy/Fuzz Testing

Part 2: Penetration (Pen) Testing

Definition of Security Verification, The
“Verification Crisis”, Challenges,
Promising Solutions

1

2

3

Background, Definition, High-Level Overview,
Example Framework, Results, Summary

Background, High-Level Overview, Proposed
Approaches, Results, Comparison, Summary

Outline

3

SoC Security Verification

Part 1: Fuzzy/Fuzz Testing

Part 2: Penetration (Pen) Testing

Definition of Security Verification, The
“Verification Crisis”, Challenges,
Promising Solutions

1

2

3

Background, High-Level Overview, Proposed
Approaches, Results, Comparison

Background, Definition, High-Level Overview,
Example Framework, Results, Summary

Semiconductor
Market Size

$573.4B
Projected to reach
$1,380.8B by 2029

(CAGR 12.2%)

SoC Market Size

$159.8B
Projected to reach

$234B by 2028
(CAGR 8%)

PCB Market Size

$82.4B
Projected to reach
$140.0B by 2032

(CAGR 5.6%)

SoC Market Size

SoC market value is growing thanks to AI accelerators,
increased connectivity, and diversity of applications

Microelectronics
Security (2030)

$500M+
Includes IP, SoC, and

PCB security solutions

EDA

$14.0B
Projected to reach
$25.0B by 2032
(CAGR 9.1%)

EDA Market Size

EDA solutions are growing to address the need to
power and performance and move to 2.5D and 3D

$1B+
Verification market

Modern SoCs: Security is a Challenge

6

Aggressive time-
to-market

Tens of IPs from
3P vendors

Tens of billions
transistors

Many
custom/legacy/

security
functionality

Designed around
the globe

Many security
critical assets

Ensuring security is a challenge

On-chip device keys

(developer/OEM)

Device configuration

Manufacturer Firmware

Application software

On-device sensitive data

Communication

credentials

Random number or

entropy

E-fuse,

PUF, and more…
Image Source: https://novelbits.io/chipset-vs-module-bluetooth-le-solutions-the-ultimate-
guide/

Growing # Vulnerabilities – Verification is a MUST

7

� Fault Injection
� Privilege Escalation
� Trojan Insertion
� Trace Buffer
� EM Side-Channel
� CLKSCREW
� Denial-of-Service
� Vector Rewrite
� Rowhammer
� Power Side-Channel
� Direct Memory Access
� BranchScope
� Bitstream Encryption

Cracking

� Plundervolt
� Access Control
� Meltdown and Spectre
� Machine Learning
� Information Leakage
� Trusted Execution

Environment Breaking
� Reset and Flush
� Branch Shadowing
� Bitstream Tampering
� Reverse Engineering
� Timing Side-Channel
� Integrity

Strong Algorithm &
Architecture

Weak Implementation &
Execution

Security: An Indispensable Aspect of Verification

8

• In addition to functional, performance requirements, security requirements have recently
emerged important concerns:
‒ Lack of understanding of security vulnerabilities by designers
‒ Recent reports of critical hardware security vulnerabilities in commercial products

Fault injection,
physical

side channels.

Software exploitable

hardware vuln.

Hardware
Vuln.

Information leakage, µ-architectural side channels, fault injection, hardware trojans, etc.…

Recently reported security vuln. in commercial SoCs

Need for Dynamic Verification: A Case Study

9

• In a RISC-V SoC
‒ There may be up to 3 privilege levels: M, S and U
‒ Privileged access is protected through a complex interplay between hardware and

software

Interconnect

Peripheral
Peripheral

Peripheral

Peripheral
Peripheral

Peripheral

Fetch unit
Decoder

Execute unit

Program
counterExcept

handler

Reg file

CPU

Hardware

Boot/Startup code

User application

Software

Assume: M and U-modes are implemented
All rights reserved

Need for Dynamic Verification: A Case Study

10

• In a RISC-V SoC
‒ When an illegal access is detected, hardware raises an illegal instruction exception
‒ The hardware program counter will jump to address stored in register mtvec

→ mtvec needs to be configured properly
‒ Software trap handler code will handle the response

• Hardware-software interplay is indispensable for protection of assets.

Assume: M and U-modes are implemented, baremetal scenario
All rights reserved

Alibaba’s T-Head C910 RISC-V, April 2024

11

• German Center for Information Security has found serious security flaws in
Alibaba’s T-Head Semiconductors containing RISC-V processors

• T-Head 4 core, TH1520 SoC now dubbed “GhostWrite”, allowing hackers access to
read and write physical memory and execute arbitrary code

• Bad Actors can take over the SoC and hijack the host, the vulnerability lies in faulty
instructions in the RTL chip design

• Given the instructions are “baked” into the design,
silicon, it cannot be fixed with a Software update

Comparison of Traditional Methods

12

• Traditional methods presuppose white-box knowledge
‒ A major pitfall given today’s SoC supply chain context

• Vast majority of traditional HW verification methods are not dynamic
‒ Unable to consider HW-SW interactions

Method Model Limitation Scalability Automation
Formal property

verification
White-box False positive, state

explosion, low
accuracy

Low Low

Symbolic, Concolic White-box Path explosion, low
accuracy

Low Moderate

Genetic Algorithms White-box Reliance on
structural features

Low Moderate

ML White-box Reliance on
structural features

High Moderate

Promising Solutions: Test Generation for Security

13

• To keep up with increasing design complexity

Scalability with Complex Designs

• To deal with realities of the supply chain

Gray-box Methods

• To detect vulnerabilities and desired coverage quickly

High Coverage using Intelligent Tests

• To guide pattern generation effectively through feedback
• To maximize coverage

Meaningful Security Verification Metrics

• To account for HW-SW interactions

Novel Dynamic Methods

Fuzz
Test

Pen
Test

Outline

14

SoC Security Verification

Part 1: Fuzzy/Fuzz Testing

Part 2: Penetration (Pen) Testing

Definition of Security Verification, The
“Verification Crisis”, Challenges,
Promising Solutions

Background, High-Level Overview, Proposed
Approaches, Results, Comparison, Summary

1

2

3

Background, Definition, High-Level Overview,
Example Framework, Results, Summary

Evolutionary Fuzzing Approach

15

An automatic testing technique
Uses invalid/semi-valid/valid data as application input
Targets numerous boundary/corner cases
Used to generate and feed the target program with plenty of test cases to trigger bugs
Ensures the absence of exploitable vulnerabilities
Widely used in software domain for bug detection

Typical Fuzzing Technique Overview

Apply mutated inputs to HW directly
Software simulation
FPGA based emulation

Advantages
Faster (emulation) and scalable
Effective for HW/SW co-layer verification

Disadvantages
Limited permissions in some low-level

Current Fuzzing Practices for Hardware Verification

16

Fuzzing Hardware as Software

Direct Fuzzing on Hardware

HW RTL � SW model by Verilator
Fuzz SW model
Crashes � Vul. Detection
Advantages

Less time required for initial preparation
Disadvantages

Emerging vulnerabilities due to translation

Fuzzer w/ FPGA-accelerated Simulation

Ref. Laeufer, Kevin, et al. "RFUZZ: Coverage-directed fuzz testing of RTL on FPGAs." 2018
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). ACM, 2018.

Ref. Trippel, Timothy, et al. "Fuzzing hardware like software." 31st USENIX Security Symposium (USENIX Security
22). 2022.

Motivation: Utilizing a real-time HW Emulation Platform for Fuzzing

Experiment: RTL Code with Vulnerability

17

When lock bit is set, memory overwrite by enabling scan or debug
mode

CWE-1234: HW Internal or Debug Modes Allow Override of Locks

Experiment: Security Property

18

Cycle 1 Cycle 2 Cycle 3

Assume: Data write enable bit is never been set in any previous cycle
Data write happens and lock bit set set in a cycle
Provided written data and data intended to be written next are not same
Check intended data to be written in figure goes to the output port

Assertion failure happens!!!!

Experiment: Fuzzing Result

19

293 Unique crashes identified in 24 minutes!

20

Our Proposed Framework
SoCFuzzer

Proposed Direct Fuzzing Framework: SoCFuzzer

21

Scalable and automated framework for SoC security verification
Develop evaluation metrics, cost function, and feedback for runtime update of mutation strategies
Global minima of cost function � Vulnerability detection
Implementation � Emulation board: Genesys 2 Kintex-7 FPGA Development Board, SoC: 64-bit RISC-V Ariane

HW debugging: Xilinx Integrated Logic Analyzer (ILA), Monitoring: JTAG, OS: Linux, Mutation Engine: AFL Fuzzer

SoCFuzzer SoC Vulnerability Detection using Cost Function enabled Fuzz Testing

Ref. Hossain, Muhammad Monir, et al. "SoCFuzzer: SoC Vulnerability Detection using Cost Function enabled Fuzz Testing." 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023.

SoCFuzzer Evaluation Metrics

22

Objective: guides fuzzing to generate smarter-than-random test inputs based on metrics
Few metrics based on security properties

Evaluate the quality of mutated inputs
Estimate the chances of hitting a potential malicious behavior
Faster convergence by a feedback utilizing metrics � faster triggering the vulnerability

SoCFuzzer Cost Function and Feedback

23

Cost Function
• Developed based on proposed fuzzing evaluation metrics, M1, M2, M3, and M4
• Fuzzing objective: minimizing cost function (global minima � vulnerability triggered)
• ↑ Metrics � better fuzzing � faster vulnerability trigger (global minima)

Feedback
• Positive CFIR � better fuzzing � Continue mutation w/ the same mutation strategy
• Negative CFIR � Mutation against objective � Change the mutation strategy
• CFIR estimated after each frequency of feedback generation (FREQfb) iterations

Distracted
Target Global Minima

(Vulnerability Triggered)Mutation strategy changed
Cost Function
& Feedback
Realization

Experimental Setup

24

Vulnerabilities in Ariane SoCs

Cost Function Development

Example Cost Function for SV1

Index Vulnerability Location Triggering Condition Output Behavior Ref.

SV1 Leaking the AES secret key through the common
bus in the SoC AES IP Specific plaintext AES Key leaks to PO CVE-2018-

8922

SV2 A Trojan injects a delay in the AES IP in cipher
conversion AES IP Specific plaintext Ciphertext not resulted in time AES-T500

SV3 Incorrect implementation of logic to detect the
FENCE.I instruction CPU (dec) imm ≠ 0 & rs1 ≠ 0 Illegal instr exception raised CWE-440

SV4 Execute machine-level instructions from user mode CPU (dec) Execute ”mret” instruction No exception exhibited CWE-1242
SV5 Access to CSRs from lower privilege level Register file mstatus_reg r/w from user space No exception exhibited CWE-1262

Index σ Input Output Effective
Length (N-d)Data Length Signal Length

SV1 1 Plaintext 128 bits Ciphertext 128 bits 128 bits
SV2 1 Plaintext 128 bits Control Register 32 bits 128 bits
SV3 0 Instruction 32 bits Exception Raised N/A 32 bits
SV4 0 Instruction 32 bits No Exception N/A 32 bits
SV5 0 CSR instruction 32 bits No Exception N/A 12 bits

Results Analysis
 Contd…

25

SoCFuzzer with the feedback CFIR outperforms the conventional fuzzing without our proposed feedback
An optimum value required for FREQfb, a low value � insufficient samples to evaluate, high value � too much
time with an inefficient mutation strategy
For all quality of seeds, SoCFuzzer with the proposed feedback shows excellency in faster triggering vul.

Cost Function and Feedback Analysis in Detecting Vulnerability (SV3) Cost Function Analysis in Detecting SV1, SV2, SV4, and SV5

Performance of SoCFuzzer with Feedback for Variation in FREQfb Performance of SoCFuzzer for Various Quality Seeds

Results Analysis

26

Summary Results: Vulnerability Detection

Compare
w/
HW
Fuzzing
Approach

Index HD(seed
, VTI)

FREQfb No. of Executions Speed
up

Fuzzing w/o CF_FB SoCFuzzer

SV1 62.50% 7 10968 2862 73.91%

SV2 62.50% 6 21319 2999 85.93%

SV3 25% 6 361 180 50.14%

SV4 43.75% 5 415 162 60.96%

SV5 66.67% 6 968 275 71.59%
HD(seed, VTI): HD of Seed and Vulnerability Triggering Input CF_FB: Cost Function enabled Feedback FREQfb: Optimum FREQfb

Index Fuzzer
Engine

Frame-
work

Target Feedback to Mutation Engine Golden
Model

RFUZZ HW Fuzzer FPGA Emu IP Designs MUX coverage Yes
DifuzzRTL HW Fuzzer FPGA CPU Design Control-register Code coverage Yes

Hyperfuzzing SW Fuzzer SW Sim SoC Design NoC, Instruction and Bitflip Monitors Yes

TheHuzz HW Fuzzer HDL Sim CPU Design
Statement, toggle, branch expression,

condition, FSM Yes

SoCFuzzer
Modified HW Fuzzer
using CF and Metrics FPGA SoC Design Cost Function based (vulnerability-oriented) No

For optimum FREQfb, SoCFuzzer detects all
vul. in less time w/ variety quality of seeds
SoCFuzzer saved at least 50% of verification
time

Improvement Scopes in SoCFuzzer

27

• Optimization and selection of seed(s)
• Potentially less dependency on initial seed

Efficient Seeds for HW-oriented Fuzzing

Taint Inference-enabled Fuzzing

28

Proposed Fuzzing Framework: TaintFuzzer
Scalable and automated framework for SoC security verification
Leverage taint propagation for more HW-oriented fuzzing (mutation)
Leverage taint inference for generating smart seeds from initials
Utilize taint inference in cost function and feedback development for efficiency in HW fuzzing
Proposed cost function and feedback for runtime update of mutation strategies

Taint Inference

Extensive HW-
centric Mutation

Gray-box Model
Verification

Smart Seeds Evolution, Cost Function and Feedback

29

Smart Seeds Evolution

Cost Function Feedback

Definition: smart seeds expedite mutations in triggering vulnerability
Challenging to select an initial seed: Can’t be selected in a trivial process or
arbitrarily
Inefficient seeds � increased verification time
Smart seeds derived based on proposed metric HW Seed Impact Factor (Is)
Randomly mutated inputs from initial with seed w/ higher Is � smart seeds
Is considers impact on HW behavior and proximity of malicious behavior
Smart seeds used for longer deterministic mutation (efficient)

HW Seed Impact Factor

Results Analysis

31

Summary Results: Vulnerability Detection
Only few iterations required to mutate smart
seeds (~6x to ~12x)
Saved at least 32% of verification time
compared to fuzzing w/o proposed feedback
Saved 11.68% verification time compared to
SoCFuzzer framework

TaintFuzzer also detected few unknown vulnerabilities in the Ariane SoC

Index Vulnerability Location Triggering Condition Output Behavior

USV1 Allow retrieving last ciphertext of encryption operation for AES
module in SoC AES IP Specific plaintext Read last ciphertext

USV2 Release intermediate result of encryption as final ciphertext AES IP Specific plaintext Intermediate
ciphertext

USV3 No exception while executing an illegal instruction (MULH) CPU (Dec) (rd = rs1 ∨ rd = rs2) No exception raised

Improvement Scopes in Prior Frameworks

32

• Auto tuning of frequency of feedback evaluation
When to evaluate a new feedback?

SoCFuzzer+ Implementation

33

Reinforcement learning guided emulation based framework developed based on SoCFuzzer
RL utilizes cost function-based feedback to tune mutation strategies and when getting feedback

Increasing cost function � RL penalty, decreasing cost function � RL reward
Vulnerability trigger: Global minima (based on properties) or local minima of cost function
SoC: RISC-V-based 64-bit Ariane SoC, HW debugging: Xilinx Integrated Logic Analyzer (ILA)
Emulation board: Genesys 2 Kintex-7 FPGA Development Board

SoCFuzzer+ AI Model

34

RL Learning

State Set

An agent learns to interact w/ environment to
maximize cumulative reward
Training agent to make action towards a goal
Action results in feedback as reward or penalty

Action Set

Change in metric values define the state
A state represents a frequency of feedback evaluation and a
mutation strategy

An action set is chosen from a particular state for a particular number of iterations in fuzzing
Action set consists of a particular mutation strategy and frequency of feedback evaluation

SoCFuzzer+ AI Model

35

Agent Rewards

Q-Table

State Transition Function

Determines how likely an against move from one to another state
Implement stochastic state transition for a new module, i.e., initially randomized Q-table
Utilize mature Q-table over time for more deterministic state transition
Action chosen best on the highest reward in Q-table for the current state

Provided based on cost function improvement rate (CFIR)
+ve CFIR � Reward, Max reward � CF minima
Negative CFIR � Penalty (negative reward)

Q-table updated after certain iterations
𝛼 � Learning rate
𝛾 � discount factor

Results Analysis
 Contd…

36

Decreasing iterations significantly for triggering a vulnerability over the trial in RL model
E.g., in worst case, first vulnerability detection in 20K, decreases to 15K in second trial

Performance evolution over the trials while verifying the Ariane SoC modules

Results Analysis

37

Summary Results: Vulnerability Detection

Saved at least 47% of verification time
comparing w/o proposed AI feedback
Saved at least 15% of verification time
comparing to SoCFuzzer framework
Saved 23% verification time on
average comparing to prior SoCFuzzer
framework
Detected three unknown vulnerabilities

Unknown Vulnerability Detection

Outline

38

SoC Security Verification

Part 1: Fuzzy/Fuzz Testing

Part 2: Penetration (Pen) Testing

Definition of Security Verification, The
“Verification Crisis”, Challenges,
Promising Solutions

1

2

3

Background, High-Level Overview, Proposed
Approaches, Results, Comparison, Summary

Background, Definition, High-Level Overview,
Example Framework, Results, Summary

Security Verification by Hardware Penetration Test

39

• High level overview:
‒ Cost function driven grey box hardware penetration testing framework
‒ Both simulation and emulation compatible
‒ Self-evolutionary test pattern generation through Binary Particle Swarm Optimization
‒ Capable of triggering hardware vulnerabilities even with remote (software) access
‒ Applicable across a wide variety of threat models

• Fundamental insight� Security policies can be represented as mathematical cost
functions such that
‒ finding global optimal will trigger the vulnerabilities (if they exist) that violate them

SHarPen: Security Verification by Hardware Penetration Test

All rights reserved

SHarPen Requirements and Steps

40

• Requirements:
‒ PR1: The tester possesses a high-level knowledge of potential vulnerabilities and

their high-level impact on neighboring signals/modules.
‒ PR2: The tester can observe a sub-set of signals of the design that might be

impacted by the vulnerabilities (grey-box).
‒ PR3: The tester can control a sub-set of relevant signals of the design to the

vulnerabilities (grey-box).
Steps:

Translate

• Translate
security
policies to
cost
functions

Exercise

• Apply test
patterns to
exercise
the DUT

• Simulate
or emulate
the design

Monitor

• Observe
relevant
quantities
(e.g.,CSRs
, internal
signals)

Evaluate

• Use
observed
values to
evaluate
cost
function

Mutate

• Use
feedback
to
generate
new test
patterns

Detect

• If global
optima is
reached,
vulnerability
is detected.H

ar
dw

ar
e

Pe
n

Te
st

All rights reserved

Step 1: Translate Security Policies

41

HD:= Hamming Distance
SC:= Secret Key; α= C. ParameterAll rights reserved

Translate: Translate security policies to grey box cost functions
• Example 1:
‒ Detecting information leaking + DoS trojans in AES
‒ No structural/implementation knowledge assumed about the AES (Grey-Box).

Security policies

Asset should not show up at:

Step 2 and 3: Exercise and Monitor

42

Emulation Framework

• RTL is instrumented, synthesized and then
prototyped on an FPGA.

• The user space program is directly run on the
hardware (Exercise at-speed)

• Monitor relevant signals through Host PC via
debug port (Monitor)/ ILA core

Simulation Framework

• RTL is converted to equivalent C++ model

• The user space program is run on the software
model (Exercise)

• The .vcd file is parsed to observe relevant signals
(Monitor)

• We propose two variants of SHarPen
‒ One is simulation compatible, other emulation compatible

All rights reserved

Step 4 and 5: Evaluate and Mutate

43

• For example 1:
‒ If there’s a violation of security policy

→ At least one term becomes 0

• Insight:
‒ This becomes a mathematical function minimization problem

• Binary Particle Swarm Optimization (BPSO) is a viable solution
‒ No training required
‒ Adaptable to binary input vectors
‒ Less prone to getting stuck in local minima.

All rights reserved

Figure: BPSO finding minima of a function *

*Source: Wikipedia

Step 6: Detect

44

• Mutate test patterns (Baremetal C code for example 1) until convergence.

•

• If there’s a violation of a security policy, corresponding to current generation
of swarm� At least one term becomes 0
‒ F evaluates to 0
‒ The vulnerability is triggerable/exploitable with current input

→ Vulnerability exists and is detected

SHarPen

All rights reserved

Summary of Results

45

• Key takeaways:
‒ Both simulation and emulation frameworks

successful in detecting vulnerabilities
→ Grey box cost functions

‒ Emulation framework provides nearly 15x
improvement in time required

→ Emulation offers greater scalability
‒ BPSO offers quick and reliable convergence

to global minima
‒ User configurable parameter α has minimal

impact on framework performance. Figure: Finding Global Optima of Cost Function

All rights reserved

Targeted vulnerability � SV1 SV2
Simulation 3050-3150(s) 3050-3150(s)

FPGA emulation 180-190(s) 190-200 (s)

Required time for Vuln. Detection

Summary

46

• To keep up with increasing design complexity

Scalability with Complex Designs

• To deal with realities of the supply chain

Gray-box Methods

• To detect vulnerabilities and desired coverage quickly

Intelligent Test Pattern Generation

• To guide pattern generation effectively
• To maximize coverage

Meaningful Security Verification Metrics

• To account for HW-SW interactions

Novel Dynamic Methods

FPGA emulation compatibility enables
at-speed execution of test-patterns

Requires minimal knowledge of internal
signals

Utilizes security relevant feedback for
intelligent test generation

Utilizes security-oriented metrics

Fuzzer running natively on DUT

Conclusion

47

Problem Solution Potential
Vast SoC threat surface.

Traditional verification
methods do not scale well

for complex designs

Combination of Fuzz and
Pen Testing offer promising

alternatives with better
scalability and

generalizability.

Have already been
successfully employed in
detecting vuln. in open-

source benchmarks

