
Stateful hash-based signatures

September 4, 2024

From theory to practice

Dr. Nimisha Limaye, Staff Engineer

© 2024 Synopsys, Inc. 2

Outline

• Basic of digital signatures, effect of quantum computers, next steps
• Stateful Hash-based signatures
• Leighton Micali Signature (LMS) scheme
• eXtended Merkle Signature Scheme (XMSS)
• Summary
• Synopsys products

Stateful Hash-Based Signatures

© 2024 Synopsys, Inc. 3

Hash function
Preliminaries

• Converts long binary strings (message) to fixed-length output strings (digest)
– H: {0,1}∗	→ {0,1}"

• Cryptographic hash function (𝑥	 → 𝐻 𝑥 = 𝑦):
– Preimage resistance: hash function 𝐻() is one-way; cannot deduce 𝑥 given 𝐻 𝑥
– 2nd preimage resistance: cannot find 𝑥# ≠ 𝑥	such that 𝐻 𝑥 = 𝐻(𝑥′), given 𝑥 and 𝐻 𝑥
– Collision resistance: cannot find x$ ≠ 𝑥%	such that 𝐻 𝑥$ = 𝐻(𝑥%)	
– Examples:

§ SHA-2, SHA-3 and its XOF variants

• Applications:
– Digital signatures: a cryptographic hash function increases the security and efficiency of a digital

signature scheme when the digest is digitally signed instead of the message itself
– Pseudorandom bit generation, message authentication codes, and key derivation functions

Stateful Hash-Based Signatures

© 2024 Synopsys, Inc. 4

Digital Signatures
Basics

• Messages are signed by the private key and verified by
anyone using the public key
– Bob can verify a message signed by Alice using Alice’s public key
– Guarantees that the message was not modified and was signed by the holder of

the corresponding private key (Alice)

• Messages to be signed must be small
– Message could be a FW image for secure boot (100s of MB); Alice does not sign

the image, but a hash (cryptographic digest) of the message
§ Preimage resistance: hash function 𝐻() is one-way; cannot deduce 𝑥 given 𝐻(𝑥)
§ 2nd preimage resistance: cannot find 𝑥! ≠ 𝑥	such that 𝐻 𝑥 = 𝐻(𝑥′), given 𝑥 and 𝐻 𝑥
§ Collision resistance: cannot find x" ≠ 𝑥#	such that 𝐻 𝑥" = 𝐻(𝑥#)
§ e.g. Using SHA2 or SHA3

– Bob also computes the digest of the image and verifies Alice’s signature against
the digest

Stateful Hash-Based Signatures

Pass/Fail

© 2024 Synopsys, Inc. 5

Digital signatures
Commercial National Security Algorithm Suite 1.0 (before Quantum Computers)

Stateful Hash-Based Signatures

https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF

© 2024 Synopsys, Inc. 6

Quantum computers versus Cryptography
Shor’s algorithm and Grover’s algorithm

Stateful Hash-Based Signatures

Shor’s algorithm Grover’s algorithm
Exponential speedup Quadratic speedup; find preimages in

O(2!/#)
Broke prime factorization and discrete
logarithm

Still not practical to solve searching,
collision finding algorithms

RSA, ECDSA, ECDH, DSA no longer
secure

Larger key sizes/digest needed for AES
and Hashes

© 2024 Synopsys, Inc. 7

Quantum computers versus Cryptography
Commercial National Security Algorithm Suite 1.0 to 2.0

Stateful Hash-Based Signatures
https://media.defense.gov/2022/Sep/07/2003071836/-1/-1/0/CSI_CNSA_2.0_FAQ_.PDF

© 2024 Synopsys, Inc. 8

Hash-based Signatures
Basic building block

• Comprises two components:
– One-time signature (OTS) scheme
– Single, long-term public key

• Winternitz OTS: Building block
– Message is hashed →	 digest is encoded as a base b number → each digit is signed using a hash chain

• Hash chain:
– sequential hashing of digit (b-1) times to obtain WOTS public key and sequential hashing m times to sign

the digit value “m”
– Consider a 2-bit digit m (b = 4) to be signed with secret key SK

§ signature for m = 0 is SK and signature for m = 3 is PK
– PKs associated with all the digits are compressed into a WOTS PK

§ Compression step is different in XMSS and in LMS

Stateful Hash-Based Signatures

𝑆𝐾	 → 𝐻 𝑆𝐾 → 𝐻 𝐻 𝑆𝐾 → 𝐻 𝐻 𝐻 𝑆𝐾 → 𝑃𝐾

Signature
for m = 1

Signature
for m = 0

Signature
for m = 2

Signature
for m = 3

© 2024 Synopsys, Inc. 9

Hash-based Signatures
Key generation

• Private key (𝑠𝑘): A random value of length 192 or 256 depending on the
approved parameter set
– Note: Hash function (𝐻) can be used to obtain 𝑠𝑘 from some random seed (𝑆𝐸𝐸𝐷) and chain number (𝑖)

• Hash chain: Input = private key, Output = public key
• Hash chain length (w𝑙𝑒𝑛): Depending on the Winternitz parameter, 𝑤𝑙𝑒𝑛 = 𝑏 − 1

– Winternitz parameter (w): 𝑏 = 𝑤 for XMSS, 𝑏 = 2&	for LMS
– In Practice: Winternitz parameter (𝑤) specified for XMSS is 16 and for LMS is {1,2,4,8} as per RFC 8391

and RFC 8554

• Public key (𝑝𝑘<): Digest obtained after hashing 𝑠𝑘<, 𝑤𝑙𝑒𝑛	times.

• All PKs compressed together forms the WOTS PK
– 𝑆𝐸𝐸𝐷 and OTS PK forms the key-pair to sign one message

Stateful Hash-Based Signatures

𝑆𝐸𝐸𝐷, 𝑖	 → 𝐻	 → 𝑠𝑘$ → 𝐻	 → 𝐻 𝑠𝑘$ → 𝐻 → 𝐻# 𝑠𝑘$ → ⋯ → 𝐻%&'! 𝑠𝑘$ = 𝑝𝑘$

© 2024 Synopsys, Inc. 10

Hash-based Signatures
Signature generation

• Digest is encoded as base b number
– for b = 16, digest = 0x65FA is converted into 4 hexadecimal digits “6”, “5”, “F” and “A”
– for b = 4, digest = 0x65FA is converted into 8 digits “1”, “2”, “1”, “1” ,“3”, “3”, “2” and “2”

• Signing each digit of the digest (𝑥<) with 𝑠𝑘< to obtain WOTS public key p𝑘<
– 𝑤𝑙𝑒𝑛 depends on the digit value of	𝑥'; 𝑥' = 6 makes w𝑙𝑒𝑛 = 6

Stateful Hash-Based Signatures

Digest
𝑥 6 5 F A
𝑠𝑘 𝑠𝑘(𝑠𝑘$ 𝑠𝑘% 𝑠𝑘)
𝑠𝑖𝑔 𝐻* 𝑠𝑘(𝐻+ 𝑠𝑘$ 	 𝐻$+ 𝑠𝑘% 	 𝐻$(𝑠𝑘) 	
𝑝𝑘 𝐻$+ 𝑠𝑘(𝐻$+ 𝑠𝑘$ 𝐻$+ 𝑠𝑘% 𝐻$+ 𝑠𝑘)

𝑆𝐾	 → 𝐻 𝑆𝐾 → 𝐻 𝐻 𝑆𝐾 → 𝐻 𝐻 𝐻 𝑆𝐾 → 𝑃𝐾

Signature
for m = 1

Signature
for m = 0

Signature
for m = 2

Signature
for m = 3

© 2024 Synopsys, Inc. 11

Hash-based Signatures
Signature verification

• Digest is encoded as base b number
– for b = 16, digest = 0x65FA is converted into 4 hexadecimal digits “6”, “5”, “F” and “A”
– for b = 4, digest = 0x65FA is converted into 8 digits “1”, “2”, “1”, “1” ,“3”, “3”, “2” and “2”

• Signing each digit of the digest (𝑥<) with 𝑠𝑘< to obtain WOTS public key p𝑘<
– 𝑤𝑙𝑒𝑛 depends on the digit value of	𝑥'; 𝑥' = 6 makes w𝑙𝑒𝑛 = 6

• Hashing each signed digit (𝑠𝑖𝑔<), 𝑤 − 1 − 𝑤𝑙𝑒𝑛< times to verify 𝑝𝑘<
– To verify if digit = 6 was signed using 𝑠𝑘(, hash the signature 𝐻* 𝑠𝑘(9 times and compare with 𝑝𝑘(

Stateful Hash-Based Signatures

Digest
𝑥 6 5 F A
𝑠𝑘 𝑠𝑘(𝑠𝑘$ 𝑠𝑘% 𝑠𝑘)
𝑠𝑖𝑔 𝐻* 𝑠𝑘(𝐻+ 𝑠𝑘$ 	 𝐻$+ 𝑠𝑘% 	 𝐻$(𝑠𝑘) 	
𝑝𝑘 𝐻$+ 𝑠𝑘(𝐻$+ 𝑠𝑘$ 𝐻$+ 𝑠𝑘% 𝐻$+ 𝑠𝑘)

𝑆𝐾	 → 𝐻 𝑆𝐾 → 𝐻 𝐻 𝑆𝐾 → 𝐻 𝐻 𝐻 𝑆𝐾 → 𝑃𝐾

Signature
for m = 1

Signature
for m = 0

Signature
for m = 2

Signature
for m = 3

© 2024 Synopsys, Inc. 12

Hash-based Signatures
Possible attack

• An attacker can generate valid signatures for other messages/digests
– Attacker acquires a signature for digit of 1
– Attacker can generate valid signatures for any message > 1 by further hashing the signature
– Attacker cannot generate valid signature for digit of 0 provided hash function is pre-image resistant

• Checksum added to resist an attacker from generating valid signatures
– All digits are added, and the sum is encoded as base b
– Checksum digits are signed with 𝑠𝑘' to obtain p𝑘'
– Attacker cannot increase message digits and decrease checksum digits to generate valid signatures

Stateful Hash-Based Signatures

Digest Checksum
𝑙𝑒𝑛 6 5 F A 2 4
𝑠𝑘 𝑠𝑘(𝑠𝑘$ 𝑠𝑘% 𝑠𝑘) 𝑠4 𝑠𝑘+
𝑠𝑖𝑔 𝐻* 𝑠𝑘(𝐻+ 𝑠𝑘$ 	 𝐻$+ 𝑠𝑘% 	 𝐻$(𝑠𝑘) 	 𝐻% 𝑠𝑘, 	 𝐻, 𝑠𝑘+ 	
𝑝𝑘 𝐻$+ 𝑠𝑘(𝐻$+ 𝑠𝑘$ 𝐻$+ 𝑠𝑘% 𝐻$+ 𝑠𝑘) 𝐻$+ 𝑠𝑘, 𝐻$+ 𝑠𝑘+

© 2024 Synopsys, Inc. 13

Hash-based Signatures
WOTS chains

• In practice:
– For SHA-256/256, XMSS: 𝑤 = 16, 𝑙 = 67
– 𝑙 = 67: 256-bit digest encoded as base 4 digits, total digits: 64, total number of checksum digits: 3

Stateful Hash-Based Signatures

WOTS PK

Campos F, Kohlstadt T, Reith S, Stöttinger M. LMS vs XMSS: Comparison of Stateful Hash-Based Signature Schemes on ARM Cortex-M4. Progress in Cryptology - AFRICACRYPT 2020.

© 2024 Synopsys, Inc. 14

• One WOTS PK can only sign one message
• Concatenating many WOTS PKs can give us a single long-term PK

– Pro: Can sign multiple messages
– Con: Unacceptably large public key

• Use Merkle trees: balanced binary tree
– Hash WOTS PKs to form the leaves of the tree
– Hash the leaves in pair to form the next level up until all WOTS PKs are used to generate a single hash

value (root node) à very short single long-term PK
– Each key-pair can be used only once and must be kept track off à stateful
– Pro: single long-term public key will be very short (192/256-bits long)
– Con: additional information required to be provided along with the signature

Hash-based Signatures
Merkle Tree

Stateful Hash-Based Signatures

© 2024 Synopsys, Inc. 15

• Each ℎ< (leaf) of the tree is the output of H(𝑘<); 𝑘< are WOTS PKs
– 8 messages can be signed with a tree of height 3

• If message is signed with 𝑘D,	
– signer includes authentication path (ℎ), ℎ($, ℎ,-.)	and	WOTS	PK	(𝑘%)
– verifier computes ℎ%# , ℎ%)# , ℎ(-)# , ℎ(-.#

– if ℎ(-.# ==	ℎ(-. then 𝑘% may be used to verify the signed message

Hash-based Signatures
Merkle Tree

Stateful Hash-Based Signatures

Single long-term PK
to sign 8 messages

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf

© 2024 Synopsys, Inc. 16

• Computing the public key root value is prohibitively expensive as the tree gets
large

• Solution: HyperTree
– Tree of Trees

• Each layer signs the Tree below (using WOTS)
• Bottom Layer performs the WOTS over the message
• Advantages

– Faster key generation
– More one-time signatures

• Disadvantages
– Larger signature values
– Increased signing/verification latency

Hash-based Signatures
HyperTrees

Stateful Hash-Based Signatures
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf

© 2024 Synopsys, Inc. 17

LMS
Prefixes

Stateful Hash-Based Signatures

• Strengthen security by prepending prefix during hashing

• pk = 	𝐻 𝑝(∥ 𝐻 𝑝# ∥ 𝐻 𝑝) ∥ 𝑠𝑘

• 𝑝), 𝑝#, and	𝑝(prefixes: include unique identifier for the long-term PK, indicator whether the hash is
part of Winternitz chain or Merkle tree

• If Winternitz chain, then prefix includes number of the WOTS+ key, digit of the digest or the
checksum being signed, location of hash in the chain
– Ensures that each prefix in each hash function call is different
– Resists collision attack

• In practice: H(I || u32str(q) || u16str(i) || u8str(j) || sk)
– simple hash formatting (concatenation) but complex input formatting (non-uniform bit-sizes for a given data-width)
– j denotes chain index (location of hash in the chain)
– i denotes index of the secret key (digit index of digest or checksum)
– q denotes LMS leaf identifier (tracks used private keys)
– I denotes the LMS key identifier (128-bit identifier of the LMS public/private key pair)

© 2024 Synopsys, Inc. 18

LMS
PK leaf compression: WOTS+ PK

Stateful Hash-Based Signatures

• All individual public keys for each digit are concatenated
• Single hash function to obtain single leaf PK of the Merkle tree

• In Practice: K = H(I || u32str(q) || u16str(D_PBLC) || y[0] || ... || y[p-1])
– D_PBLC denotes fixed 2-byte value 0x8080
– y[0] .. y[p-1] denotes the WOTS+ public keys (pk) derived from p secret keys (sk)

Campos F, Kohlstadt T, Reith S, Stöttinger M. LMS vs XMSS: Comparison of Stateful Hash-Based Signature Schemes on ARM Cortex-M4. Progress in Cryptology - AFRICACRYPT 2020.

© 2024 Synopsys, Inc. 19

LMS
Parameter set approved by NIST

Stateful Hash-Based Signatures

• NIST approved SHA-256 and SHAKE256 hash function
• Output/digest sizes supported are 256-bits and 192-bits
• Winternitz parameter set approved is {1,2,4,8}
• Tree height (h): 5,10,15,20,25
• Number of hash chains (𝑙) depends on digest length and Winternitz parameter

– For w=2, 256-bit digest is divided into 2-bit digits à 128 digits
– Max. value of 2-bit digit=3; 3*128=384 à log(384) ≈ 9; to store 9-bit binary value using 2-bit digits,

additional 5 indices à checksum = 5
– Total number of indices to store digest and checksum = 133

© 2024 Synopsys, Inc. 20

XMSS
Prefixes and bitmasks

Stateful Hash-Based Signatures

• Strengthen security by prepending prefix during hashing
• Also uses bitmasks which are exclusive-ORed with the input

• pk = 𝐻 𝑝)*… ∥ 𝐻 𝑝# ∥ 𝐻 𝑝) ∥ 𝑠𝑘 ⊕ 𝑏𝑚) ⊕𝑏𝑚# ⊕𝑏𝑚(…

• 𝑝), 𝑝#, … and	𝑝)*	prefixes: include unique identifier for the long-term PK, indicator whether the hash
is part of Winternitz chain or Merkle tree

• If Winternitz chain, then prefix includes number of the WOTS+ key, digit of the digest or the
checksum being signed, location of hash in the chain
– Ensures that each prefix in each hash function call is different
– Resists collision attack

• In practice:
– Complex hash formatting (prefixes, XOR with bitmasks)
– Simple input formatting

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf

© 2024 Synopsys, Inc. 21

XMSS
PK leaf compression

Stateful Hash-Based Signatures

• Using L-Tree: Unbalanced binary tree
• W=16, 𝑙 = 67, #hashes called in L-Tree = 70

An L-tree Address

Campos F, Kohlstadt T, Reith S, Stöttinger M. LMS vs XMSS: Comparison of Stateful Hash-Based Signature Schemes on ARM Cortex-M4. Progress in Cryptology - AFRICACRYPT 2020
Request For Comments: RFC8391, https://www.rfc-editor.org/rfc/rfc8391

© 2024 Synopsys, Inc. 22

XMSS
Parameter set approved by NIST

Stateful Hash-Based Signatures

• NIST approved SHA-256 and SHAKE256 hash function
• Output/digest sizes supported are 256-bits and 192-bits
• Winternitz parameter recommended is 16
• Tree height (h): 10,16,20
• Number of private keys per SEED becomes 67 for 256-bit and 51 for 192-bit

– For w=16, 256-bit digest is divided into 4-bit digits à 64 digits
– Max. value of 4-bit digit=15; 15*64=960 à log(960) ≈ 10; to store 10-bit binary value using 4-bit digits,

additional 3 indices à checksum = 3
– Total number of indices to store digest and checksum = 67

© 2024 Synopsys, Inc. 23

Summary

• Hash-based signatures replaced classical asymmetric algorithms to resist quantum computers
– Security of HBS only depends on hash functions à infeasibility of finding pre-image and second pre-image

• XMSS and LMS standardized by NIST: SP 800-208
– Winternitz One-time signature
– Single long-term public key
– Merkle Tree

• XMSS has more complex hashing scheme and simple input formatting
• LMS has simpler hashing scheme but more complex input formatting
• Stateful schemes

– Signatory must keep track of which WOTS+ leaves have been previously used
– Every signature must use a different leaf à Prefixes and bitmasks makes sure of this!

• Typical use case is for FW image signing
– Finite number of FW images to be signed
– Signatory is a usually a single entity

Stateful Hash-Based Signatures

© 2024 Synopsys, Inc. 24

References

Stateful Hash-Based Signatures

• Recommendation document for Stateful HBS:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf

• RFC for LMS: https://www.rfc-editor.org/rfc/pdfrfc/rfc8554.txt.pdf
• RFC for XMSS: https://www.rfc-editor.org/rfc/pdfrfc/rfc8391.txt.pdf
• Digital Signature Standard:

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
• SHA-3 standard: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
• CNSA 2.0: https://media.defense.gov/2022/Sep/07/2003071834/-1/-

1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
• Report on PQC: https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc8554.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc8391.txt.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf

© 2024 Synopsys, Inc. 25

Moving Towards a Post Quantum Future @ Synopsys

Quantum Safety with Synopsys PQC Solutions

Agile PKA complies with the latest quantum resistant standards
• Agile and highly configurable, adaptable to future PQC algorithm

updates via firmware
• NIST standards-compliant: ML-KEM (FIPS 203), ML-DSA (FIPS

204), SLH-DSA (FIPS 205), XMSS and LMS (SP 800-208)
• Supports full PQC digital signatures, key encapsulation, key

exchange, and encrypt/decrypt functions
• Support for traditional ECC/RSA algorithms
• Ready for FIPS 140-3 security certification
• Protects against side channel and fault injection attacks

© 2024 Synopsys, Inc. 26

BACKUP

Stateful Hash-Based Signatures

© 2024 Synopsys, Inc. 27

Stateless Hash-based Signature (SLH-DSA)
(SPHINCS+)

Stateful Hash-Based Signatures

• NIST approved stateless hash-based signature scheme SLH-DSA
based on Sphincs+ algorithm
(https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.pdf)
– Removes the stateful requirement by using few-time signature scheme instead

of one-time signature scheme as in XMSS and LMS
– Suitable for distributed signatories

• Combines a many time signature scheme (FORS) with an
XMSSMT like signature
– FORS: Forest of Random Subsets
– Message is signed with FORS
– FORS signature is signed with XMSSMT

• The specific leaf in the hyper-tree is selected randomly on every
signature
– There are so many leaves (>= 263) chance of collision is infinitesimally small
– Use of FORS mitigates collisions

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.pdf

© 2024 Synopsys, Inc. 28

XMSS
PK leaf compression: In practice

Stateful Hash-Based Signatures

• Using L-Tree: Unbalanced binary tree
• W=16, 𝑙 = 67, #hashes called in L-Tree = 70

© 2024 Synopsys, Inc. 29

Hash-based Signatures
eXtended Merkle Signature Scheme (XMSS) versus Leighton-Micali Signature (LMS)

XMSS LMS
Uses Merkle tree to sign multiple messages Uses Merkle tree to sign multiple messages
Stateful; index I needs to be tracked Stateful; index I needs to be tracked
Hash function used in WOTS comprises XOR
with bitmask; 𝐻(𝑝𝑟𝑒𝑓𝑖𝑥, 𝑏𝑚⊕𝑚)

Hash function used in WOTS comprises
prefixes; 𝐻(𝑝𝑟𝑒𝑓𝑖𝑥,𝑚)

Public keys of individual message chunks are
combined using an L-tree to form the leaf
public key PK

Public keys of individual message chunks are
concatenated and hashed to form the leaf
public key PK

hashes to obtain leaf PK = 70 for w = 16 # hashes to obtain leaf PK = 1
XMSSMT allows up to 12 levels of trees HSS allows up to 8 levels of trees

Stateful Hash-Based Signatures

