arm

Device Assignment in Arm CCA

Derek D. Miller 4 September 2024

© 2024 Arm

Introduction to Arm CCA

- Arm Confidential Compute Architecture (CCA) is designed to protect data and code in use by creating isolated execution environments called Realms.
- Key Features:
 - Full software stack Isolation from the host OS and hypervisor
 - Hardware-based security mechanisms
 - Blind hypervisor Realm can contain a full OS stack
 - Support for attestation

Architecture Components

- + RME extension in the CPU
 - MMU + Add GPC
- -- SMMU
 - Add GPC
- -- MPE Memory Protection Engine
 - Provide encryption and optionally integrity
- Completer-side PAS Filter on simple onchip, memory mapped peripherals
- Granule Protection Checks (GPC)
 between peripherals that can
 independently access memory and the
 system bus
 - For some of these, this will be provided by the SMMU

Granule Protection Check

arm

Granule Protection Check

Architectural PAS

Security state	Non-secure PAS	Secure PAS	Realm PAS	Root PAS
Non-secure	Yes	No	No	No
Secure	Yes	Yes	No	No
Realm	Yes	No	Yes	No
Root	Yes	Yes	Yes	Yes

arm

What is Device Assignment?

- **Definition**: Device assignment allows hardware devices to be securely mapped to Realms, ensuring that only authorized Realms can access assigned devices.
- Importance: Allow CCA realms' Roots of Trust (RoT) to be extended to devices outside of the CPU
 - Enabling them to use GPUs, ML Accelerators, cryptographic accelerators, even DPUs
- Three broad categories of devices
 - On-SoC peripherals that are not DMA-capable
 - These do not need device assignment RMM/VMM managed page tables are sufficient
 - On-SoC peripherals that are DMA-capable (Root Complex Integrated Endpoints RCiEP)
 - Off-SoC peripherals
- For devices with multiple interfaces, the realm must trust the device to isolate the device context appropriately

On-SoC peripherals that are not DMA-capable

- Attestation is provided via the platform attestation token
- Trust in the peripheral is presumed by trust in the platform
- But the presence of the device is not explicit
 - + It's implicit in the platform's memory map

On-SoC peripherals that are DMA-capable (Root Complex Integrated Endpoints – RCiEP)

- Attestation is provided via the platform attestation token
 - But additional GET_MEASUREMENTS calls may be supported to establish trust in the device firmware
- Realm must approve it being added to its root of trust
- -- Each device needs an EL3 driver
 - The specifics of interface report retrieval is device-specific
- Realm can get details on the device through the RSI_RDEV_GET_INFO call
- To ensure that non-secure cannot intercede, the device should be placed behind a Realm Physical Address Space filter (by the SoC vendor)
 - Limit access to Root/Realm security state

Off-SoC peripherals

- Device Assignment does apply
- physical link must be protected against physical attacks
 - By IDE or similar
- Attestation is provided via TDISP/SPDM
- But the realm must approve it being added
 - After checking the GET_CERTIFICATES and GET_MEASUREMENTS results
- -- Interface between the RMM and device is generic
 - So the RMM does not need device drivers
 - This was a requirement to keep the RMM as simple as possible

Software Flow

- SPDM/IDE session is setup by the RMM before the device is trusted
 - Necessary to ensure integrity of certificate and measurements
- Storage of certificate and measurements is done by the host
 - To avoid allocations in the RMM
 - RMM maintains hashes of them
- + Realm enters the picture relatively late

Attestation challenges

-- Unification of Attestation "ground truth of trust"

- It is desirable to have one entity responsible for determining acceptability of a TCB
- Often, this is an external service (such as Veraison) but essentially, attestation is establishing the suitability of an environment to a relying party
- However, RME-DA requires the Realm software to determine if it trusts the device
 - + It can do this autonomously (without going to an external service)
 - But this separates the "ground truth of trust" between the service and the Realm software management
 of this can be error prone (or, more likely, not done)
 - + It can do this by going to the external service
 - But this adds another round trip to the external service or the relying party
- More work needs to be done here
- Inclusion of on-SOC devices in the address map means they "appear" on the platform attestation token
 - But this is not as explicit as I'd like

+	+					
						Thank You
						+ Danke
						Gracias
						+ Grazie
						谢谢
						ありがとう
						Asante
						Merci
						감사합니나
						धन्यवाद
						Kiitos
						شکرًا
						+ ধন্যবাদ
 © 2024 Arm						

arm

The Arm trademarks featured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

() 2024 Arm						