arm

Unlocking CPU telemetry for software identification

Work in Progress

Brendan Moran, Michael Bartling, Casey Battaglino, Archie Licudi September 4, 2024

© 2024 Arm

Side channels: a curse of modern computing?

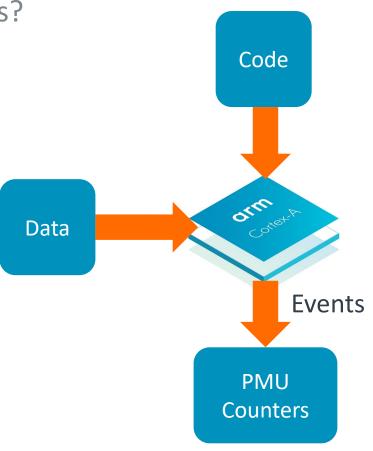
-- Improving CPU performance means deviating from the programmer's model

- -- Deviations with state create side channels
 - Unintentional paths for information
 - Side channels are the inescapable reality of modern processors
- Attackers can use side channels to extract data
- -- Telemetry: outside the programmer's model
- + What if we could turn the tables and use side channels to identify attacks?
 - One very promising side channel: hardware performance counters (HPC) (e.g. the Arm Performance Monitoring Unit (PMU) or the Intel Performance Counter Monitor (PCM))
 - Existing research in this area, but subject to limitations of extant hardware

What is the PMU?

Are Performance Monitoring Units side-channels?

- -- Collects events from the CPU core, e.g.:
 - Loads/stores
 - Branches taken
 - Instructions retired
 - Cache misses
- + Aggregates events in a few counters
- + Allows profiling of code
- Profiled code shows behavior
- -- Enables timing attacks
- Enables other profile-based attacks



Pitfalls of PMUs for software analysis

- -- External sources
- -- Non-determinism
- -- Overcounting
- -- Variations in tool implementation
- -- Loss of temporal ordering
- -- Needs very high accuracy to be deployable
 - Accuracy limits operational relevance:
 - + 5% FPR means 1 in 20 samples are misclassified as malware
 - +80% TPR means 1 in 5 malware attacks are missed

SoK: The Challenges, Pitfalls, and Perils of Using Hardware Performance Counters for Security Das et al, Oakland 2019

PMU, but for security?

Which constraints/pitfalls could we avoid?

+ What if we redesigned the event processing hardware, to be used for security?

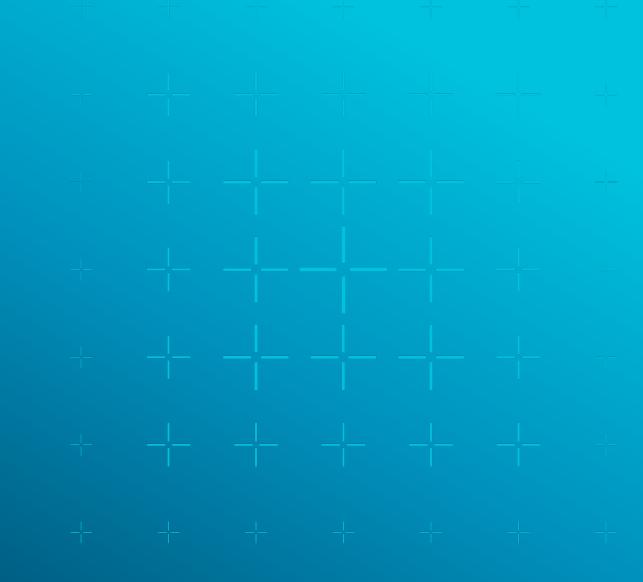
- -- External sources
 - Cache behavior necessarily multi-process: system-level behavior monitoring
- -- Non-determinism / overcounting
 - Architectural events are deterministic => use these
- + Variations in tool implementation
 - Correctible, but arguably not what we're looking for.
- -- Loss of temporal ordering
 - Fundamental to counter architecture => do not use counters

Program behavior as indicator of identity

- Programs contain substantial subdivisions in complexity
 - Basic blocks and sequences of basic blocks make up functions
 - Functions make up modules
 - Modules make up programs
 - Program execution often takes a circuitous route through all of these
- -- More detail presents further challenges
 - Preserving detail at context switches
 - Noise is not filtered out as effectively
 - Data, bandwidth, memory, compute load increase
- + Options for extracting sufficient detail
 - Long windows might provide enough detail for direct classification
 - Short windows could be classified and used as the input to a second-tier classifier

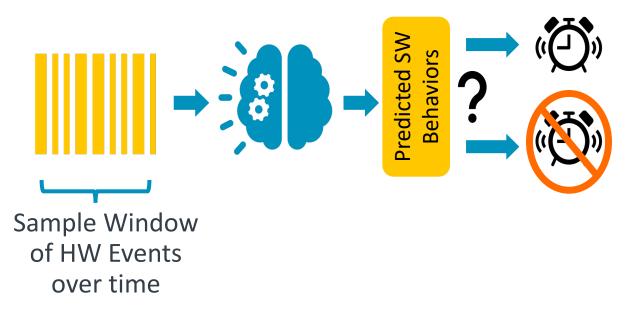
arm

Akira Architecture



Akira's approach

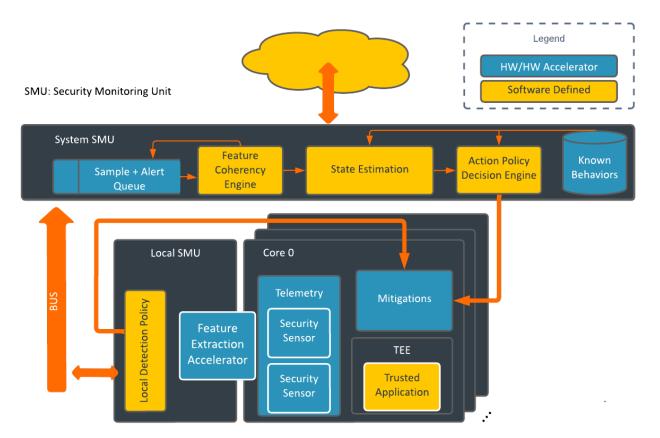
- Local low-power always-on TinyML
 - "Listen" for software behaviors
 - Enable mitigations / throw alerts when needed
 - "Respond" to emerging threats for years
- State of the Art uses standard or augmented PMU
 - Events are aggregated by PMU prior to analysis
 - E.x. 34 cache misses and 10 branch mispredicts since last time sample
- Akira processes Raw Telemetry Events
 - E.x. 1 [new] cache miss @ cycle: 5678



Akira Architecture: Tiered approach

On-SoC: The blocks

- Telemetry and Mitigations highly privileged blocks!
 - Careful to protect a high-resolution side channel
- -- Local Security Monitoring Unit (SMU)
 - On or near core
 - Custom feature extraction accelerator HW
 - Need access to a secure ML Accelerator
 + Updateable with lifecycle
 - Triggers basic mitigations if confidence high enough
 - Emits alerts + feature summarizations
 - + Benign features sampled at random
- + System SMU
 - Aggregates across local SMUs, while maintaining temporal consistency
 - Correlates samples w/ system context and known patterns to estimate
 - + 1) what samples are "linked" or related
 - + 2) and to what behaviors
 - Proposes course of action (or not)



Temporal Ordering

-- Raw telemetry events

- More detail for analysis
- Departure from established practice
- CPU designer needs to implement
- -- Impact on non-determinism
 - Multi-issue, superscalar reordering, speculative execution produce noise
- -- Impact on bandwidth
 - Counters: $m \log_2 n$ bits/window
 - Event trace: *mn* bits/window

- A transform may help

- Path Signatures [Chen 1958, Chevyrev 2016]
 + Good properties. Resistant to:
 - Offsets
 - Timing variation
 - Warping
 - reparameterization
- Bandwidth: $(\sum_{i=1}^{L} im^{i}) \log_{2} n$ bits/window
 - + More bandwidth than counters, less than trace
 + dependent on
 - event sources *m*
 - window size n
 - signature depth L
- + $S(X)_{a,t}^{i_1,\dots,i_k} = \int_{a < t_k < t} \cdots \int_{a < t_1 < t_2} dX_{t_1}^{i_1} \cdots dX_{t_k}^{i_k}$ + $S(X)_{a,b} = (1, S(X)_{a,b}^1, \dots, S(X)_{a,b}^d, S(X)_{a,b}^{1,1}, S(X)_{a,b}^{1,2}, \dots)$

Akira's approach: Compress instead of aggregate

- A limited set of events routed into a feature extraction accelerator
- Accelerator for 5 event sources has negligible area cost
- 5 event sources generates a 55-element vector (log signature)

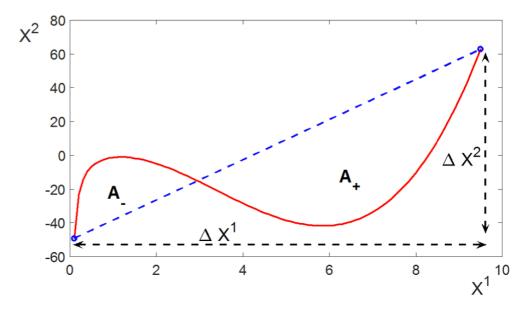
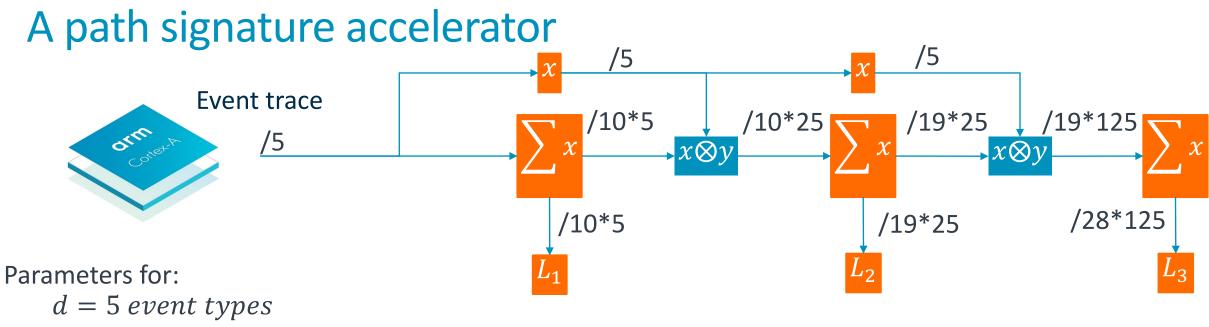


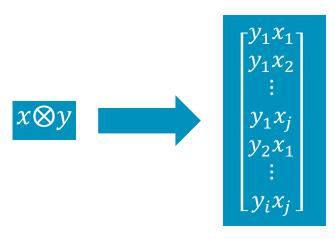
Figure 5: Example of signed Lévy area of a curve. Areas above and under the chord connecting two endpoints are negative and positive respectively.



 $n = 1024 \ events/window$

Combinatorial elements

Sequential elements



 $x \otimes y$ can be implemented by gating each element of y on each element of x, forming an outer product

arm

Experimental Methodology & Early Results

Early answers about early warnings

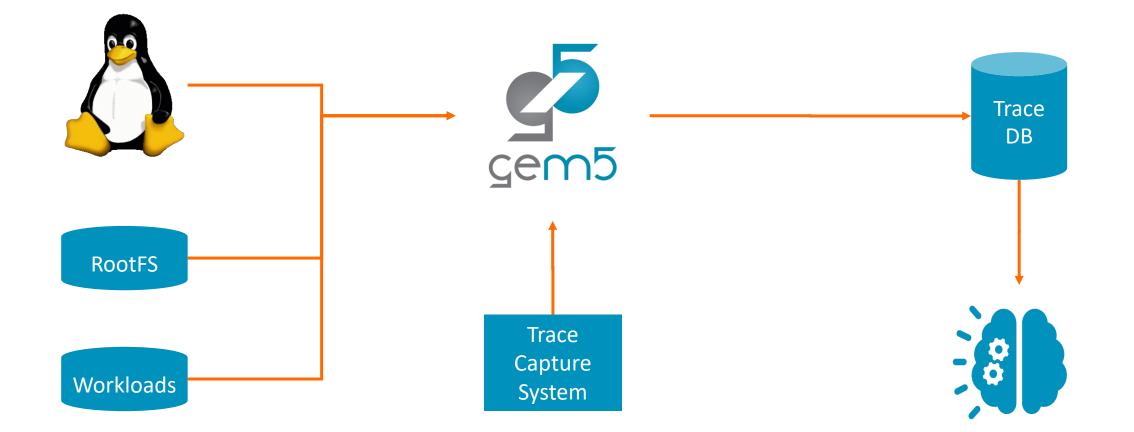
+
+
+

© 2024 Arm

arm

Data collection setup

Akira Simulation Infrastructure



Akira: The Data

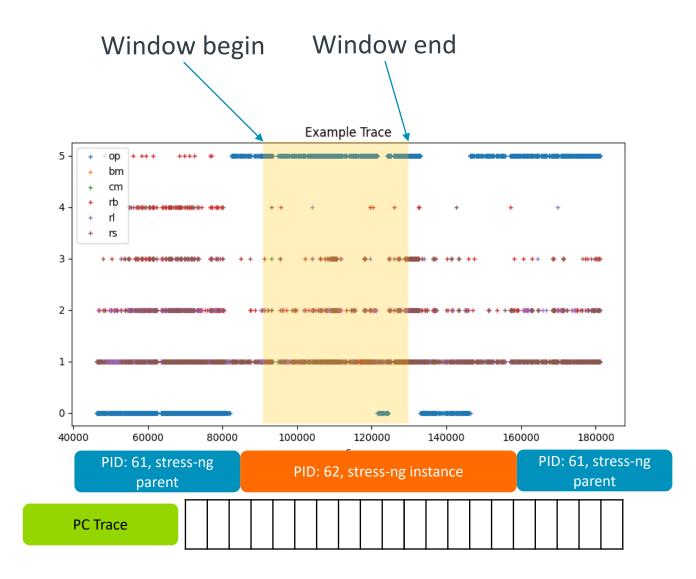
Trace Capture

Goal – Know exactly when and where things run

- -- Modified Gem5 instances
 - Direct PMU event capture in CPU
 - OS PIDs pushed to CPU regs
 - Magic NOPs for marking windows
 - Running bare metal + booting Linux
 - Capturing PC trace for labelling

Workloads (More on this later)

- -- Stress-NG Linux Testing Project
- + Juliet IARPA StoneSoup (SSL)
- -- SpectreV1 SPEC 2017



Identifying programs

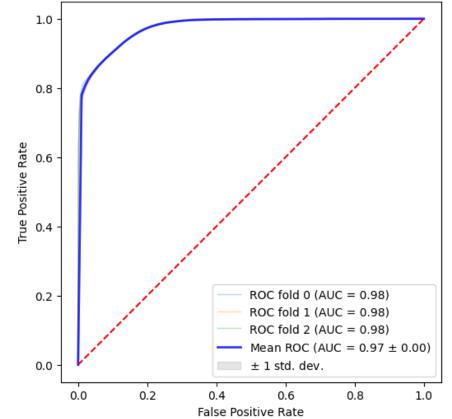
© 2024 Ar	m						

Interim Results – Program Identification

gzip vs bzip2

- + Trained on gzip, bzip2 of wav file
- + Tested on tar -z, tar -j of text file
- Model:
 - XGBoost
 - Path Signature feature extraction
 - Long windows (512)

Train on: bzip_wav_09-16-2023_212032 (100000) v gzip_wav_09-16-2023_195503 (100000) Test on: tar_bz_txt_09-16-2023_215357 (100000) v tar_gz_txt_09-16-2023_202031 (100000)



Linux kernel behavior identification

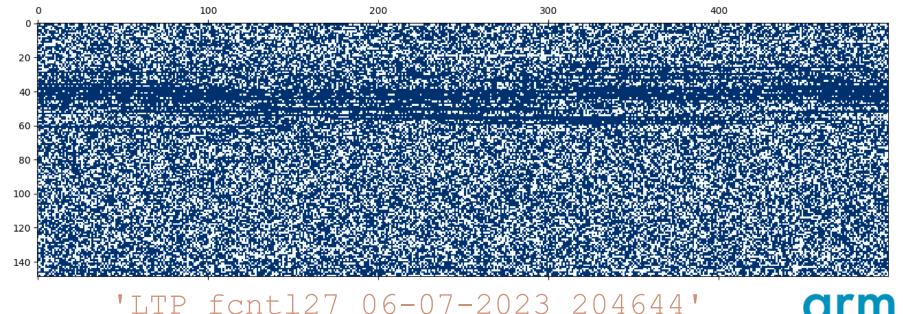
Interim Results – Kernel Function Identification

Classifying kernel behavior by PMU events

- -- Ran long-running Linux Testing Project test cases
- -- Filtered via Exception Level
- Matched PC Trace to kernel functions
 - 84 behaviors used often enough to be relevant

+ Ranked possible classes of test sample (25-event windows, XGBoost, path signatures)

- -- Accuracy
 - 97.5% top-1
 - 99% top-4



LRAP: Label Ranking Average Precision

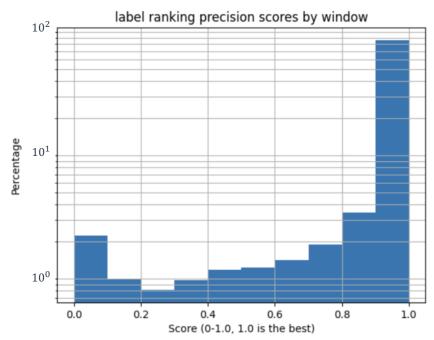
Evaluating Akira's multi-label ranking behavior

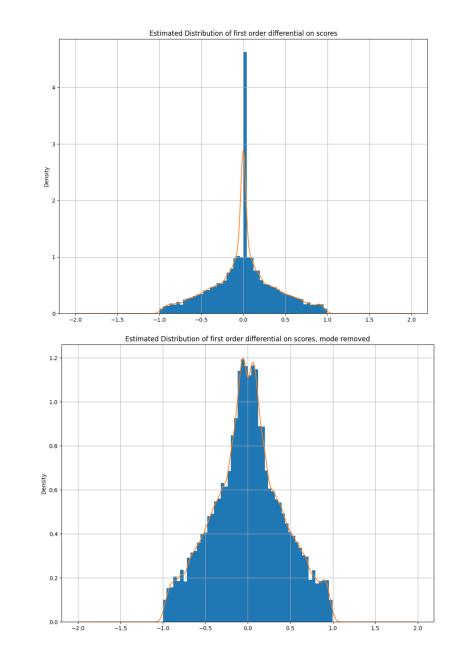
- -- Rank samples by most likely behavior "class"
- -- Identify how many false classes are ranked below ground truth for each sample
- Average these results across all samples for a given test
- May be multiple ground truths for some samples
 - i.e. One sample window == mix of software "behaviors"
 - For better score all the ground truths in a sample should be nearer the top rank
- Practical implications:
 - Real-world classifier will consume top-N ranked classes for each sample and perform disambiguation.

Interim Results – Kernel Function ID

Can we go deeper?

- -- Q: Can we identify specific code paths in software using telemetry?
 - We can distinguish between 1372 kernel functions with >85% "accuracy" using samples only 25 events long





Interim Results – Generalizing Kernel Function ID

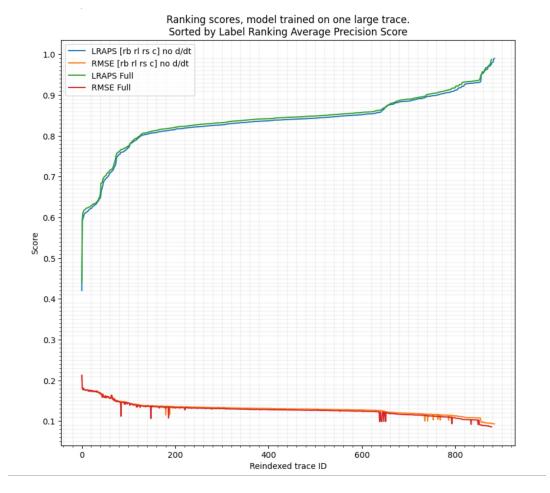
How well does training on one trace generalize to other traces?

-- Training:

- Ingest sampled form of one large trace (v4.7.1)
 - Treat as a lower bound on model performance
- Target extremely small models and learn 2 rank
 - 25-event windows, path signatures, XGBoost
- See if we can correctly identify top ~60 kernel functions

-- Testing:

- How well does this model work on all other traces (v5.12.2)?
 - Hint: it's very good

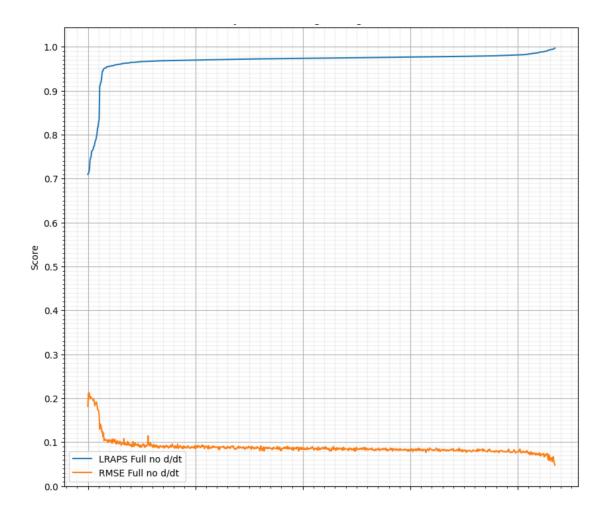


- Userspace code identification
- * * * * * * * * * * * * *
- * * * * * * * * * * * * *
- + + + + + + + + + + +

Results – User space code classification

Does the kernel-space classification system work on user-space code?

- + Top 20 user-space labels in the 969 LTP traces
- -- Training:
 - Windows containing target set labels for at least 25% of duration
 - No "unknown" labels
 - 25-event windows, path signatures, XGBoost
- -- Testing:
 - holdout set
 - LRAPS is 97.2%, per window
 - RMSE is 8.7%, per window



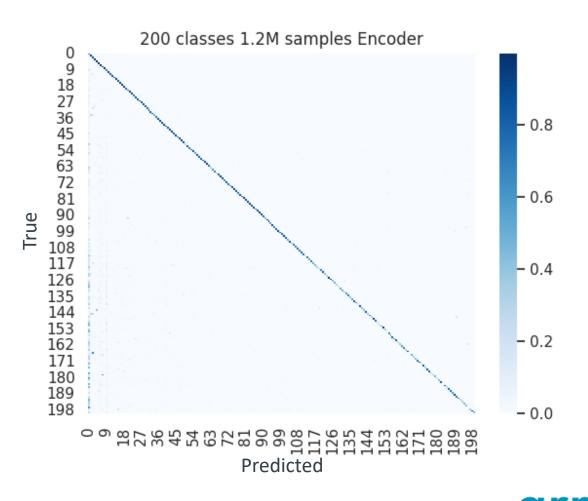
General behavior identification

© 2024 Arm

Distinguishing between code segments

Using a transformer to identify code based on behavior

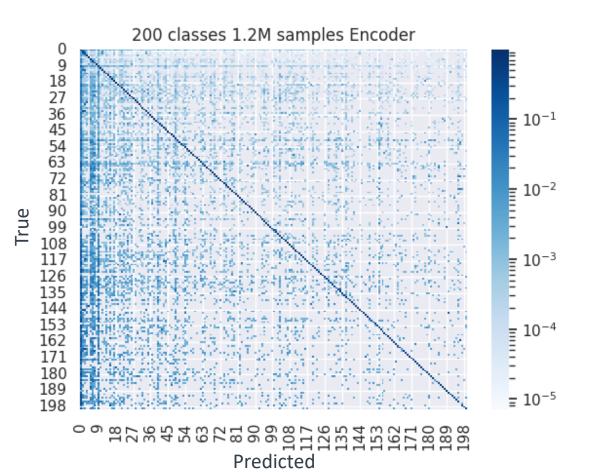
- Transformer is trained on 1.2M samples
 with the top 200 classes highlighted
 - 969 traces are sampled, with a training set and a holdout set
- -- Sources of misclassification:
 - Each sample labelled with top-1
 - All classes not in the top 200 are binned into class 0
 - Most confusion occurs when the model predicts class 0 (the catchall class)
- -- Avenues for improvement:
 - Top-n labelling
 - More classes (fewer in catchall)



Distinguishing between code segments

Confusion matrix in log-scale

- -- Most incorrect predictions < 1:10
- -- Clear bias towards more common classes
- Misprediction rate improves substantially below class 10
- -- Avenues for improvement:
 - Improve sampling balance



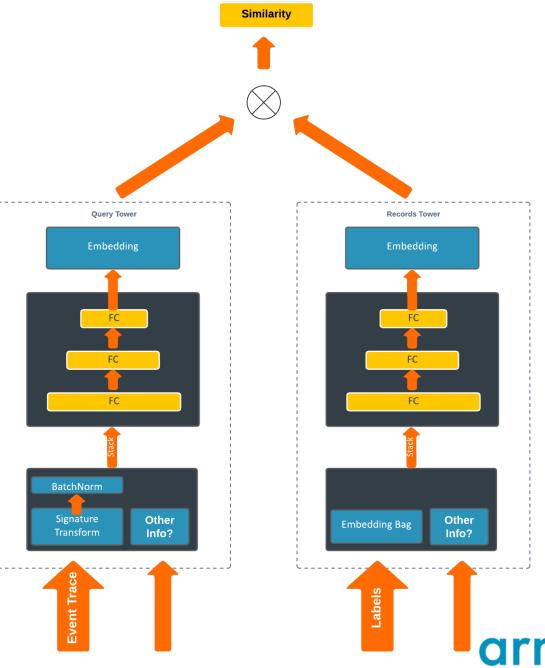
x x x x x x x x x x x x x x

Handling imbalance

| × © 2 | 024 Arm | | | | | | |
|-------|---------|--|--|--|--|--|--|

Two Tower Candidate Generator

- One Tower encodes the measurements
- Other Tower encodes our knowledge of this record
- + Model pairwise trained
 - "Sample related to Record"
- + True validation is maximum inner product search
 - Expensive, but for science!
- In practice, inference leverages vector DBs
- Can add info to input vectors for cheap



Two Towers (cont.)

- Training scales well to massive datasets

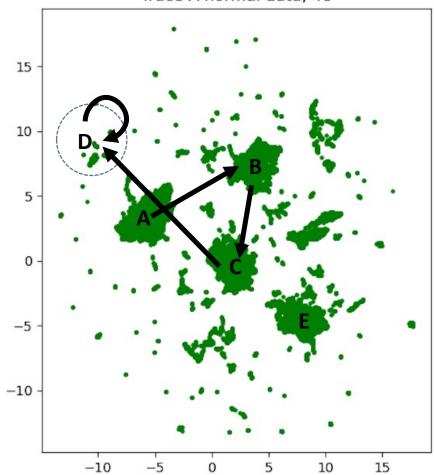
- -- Models are extremely flexible
 - Depending on data concatenated to input vectors we can handle different tasks
 - Missing sections can just be zeroed out
 - e.x. embedding encoded basic blocks -> identify/group data dependent behaviors
 - e.x. embedding local graph of basic blocks -> guide model towards ontologies
 - Similar to playlist learning
 - e.x. embedding doc strings for known benign code bases
 - e.x. embedding description metadata for known malicious samples (think VirusTotal)
 - e.x. embedding syscall trace
- -- Well suited for both cloud and system-level applications
- -- Currently in-progress
 - Sorting out details in the training

Second tier classification

© 2024 Arm

Goal: use cluster transitions to identify software

- 1. Mini-batch k-means: Unsupervised labeling of all important clusters across LTP (and beyond)
- 2. A Trace is then a path (a 'string') between these clusters
- 3. We have efficiently applied this to the entire LTP data set (takes ~1 minute)
- 4. The resulting output has allowed us to classify program types in the LTP data set with good accuracy (75% top-1 accuracy on 12 classes, using fully unsupervised features)



© 202

33

Trace A normal data, 48

Trace *i*: "ABCDD" Freq representation DE B 2 0 1

String representation

Can analyze with Topic Models

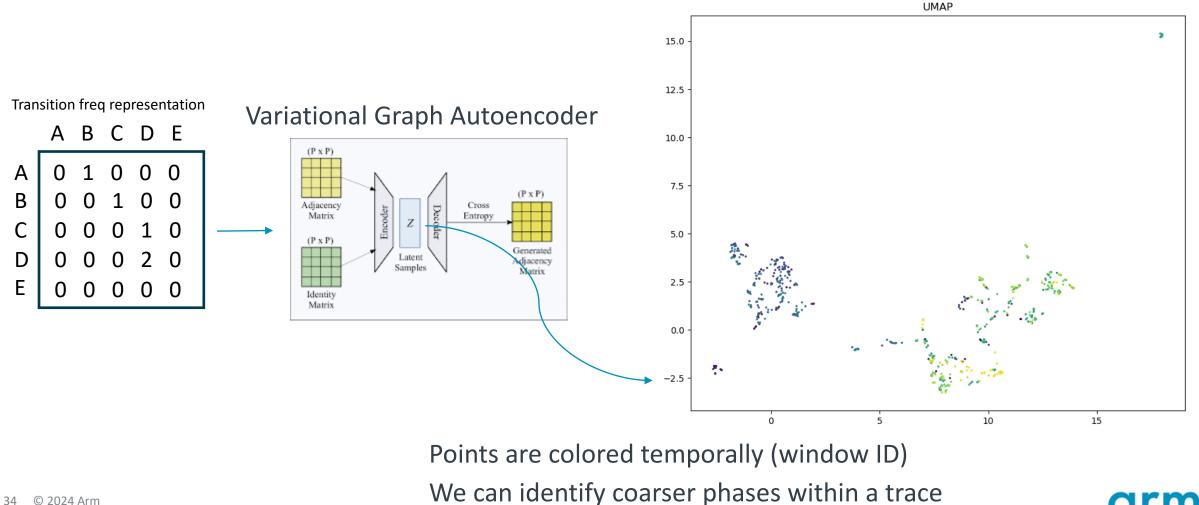
Creates a Term-Frequency structure:

Transition freq representation

| | А | В | | | Е | |
|--------|---|---|---|------------------|---|--|
| A
B | 0 | 1 | 0 | 0
0
1
2 | 0 | |
| В | 0 | 0 | 1 | 0 | 0 | |
| С | 0 | 0 | 0 | 1 | 0 | |
| D | 0 | 0 | 0 | 2 | 0 | |
| Е | 0 | 0 | 0 | 0 | 0 | |

Creates a graph structure: Can analyze with GNN, TDA

Graph Autoencoder on Soft-Label Adjacency Matrix



arm

Conclusions & Future work

Challenges

- Deployment of a high resolution performance monitor requires action by CPU designers

- CPU designers need strong evidence for adding a feature like this
- Providing evidence for this feature requires extensive data collection
- -Data collection without dedicated hardware can only be done in simulation
 - Collecting data in simulation is very slow
 - Running malicious software in simulation presents unique challenges

Conclusions

- The PMU provides high resolution data about software
 - As long as we keep ordering information
- -- Event information can be used to identify software
- Path signatures retain ordering information, but reduce data size
- Path signatures are low overhead in hardware
- Event traces can identify short behaviors with high confidence
- + Sequences of short behaviors can provide identification "strings"

| C | ari | n
× | | | | | | |
|--------------------------------|-----|--------|--|--|--|--|--|--|
| References | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |

© 2024 Arm

X

X

c x

References

- Chevyrev, Ilya & Kormilitzin, Andrey. (2016). A Primer on the Signature Method in Machine Learning.
- Chen, K. T. (1958). Integration of paths--A faithful representation of paths by noncommutative formal power series. Transactions of the American Mathematical Society, 89(2), 395-407.
- Das, S., Werner, J., Antonakakis, M., Polychronakis, M., & Monrose, F. (2019, May). Sok: The challenges, pitfalls, and perils of using hardware performance counters for security. In 2019 IEEE Symposium on Security and Privacy (SP) (pp. 20-38). IEEE.

Acknowledgements

 This material is based on work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) under agreement number W911NF20C0045.

| + | + | | | | | |
|------------|---|--|--|--|--|--|
| ari | | | | | | Thank You |
| | | | | | | Danke Gracias |
| | | | | | | + Grazie
谢谢 |
| | | | | | | ありがとう
Asante |
| | | | | | | Merci
감사합니다 |
| | | | | | | धन्यवाद
+ Kiitos |
| | | | | | | شکرًا
ধন্যবাদ |
| © 2024 Arm | | | | | | ౧౹ Τ౧
ధన్యవాదములు |

arm

The Arm trademarks featured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

| © 2024 Arm | | | | | | |
|------------|--|--|--|--|--|--|
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |