
© 2024 Arm

Brendan Moran, Michael Bartling, Casey Battaglino, Archie Licudi
 September 4, 2024

Unlocking CPU telemetry
for software
identification

Work in Progress

2 © 2024 Arm

Side channels: a curse of modern computing?
Improving CPU performance means deviating from the programmer’s model
Deviations with state create side channels
• Unintentional paths for information
• Side channels are the inescapable reality of modern processors

Attackers can use side channels to extract data
Telemetry: outside the programmer’s model
What if we could turn the tables and use side channels to identify attacks?
• One very promising side channel: hardware performance counters (HPC) (e.g. the Arm Performance

Monitoring Unit (PMU) or the Intel Performance Counter Monitor (PCM))
• Existing research in this area, but subject to limitations of extant hardware

3 © 2024 Arm

What is the PMU?
Are Performance Monitoring Units side-channels?

Collects events from the CPU core, e.g.:
• Loads/stores
• Branches taken
• Instructions retired
• Cache misses

Aggregates events in a few counters
Allows profiling of code

Profiled code shows behavior
Enables timing attacks
Enables other profile-based attacks

Data

Code

PMU
Counters

Events

4 © 2024 Arm

Pitfalls of PMUs for software analysis
External sources
Non-determinism
Overcounting
Variations in tool implementation
Loss of temporal ordering

Needs very high accuracy to be deployable
• Accuracy limits operational relevance:

5% FPR means 1 in 20 samples are misclassified as malware
80% TPR means 1 in 5 malware attacks are missed

SoK: The Challenges, Pitfalls, and Perils of Using
Hardware Performance Counters for Security
Das et al, Oakland 2019

5 © 2024 Arm

PMU, but for security?
Which constraints/pitfalls could we avoid?

What if we redesigned the event processing hardware, to be used for security?

External sources
• Cache behavior necessarily multi-process: system-level behavior monitoring

Non-determinism / overcounting
• Architectural events are deterministic => use these

Variations in tool implementation
• Correctible, but arguably not what we’re looking for.

Loss of temporal ordering
• Fundamental to counter architecture => do not use counters

6 © 2024 Arm

Program behavior as indicator of identity
Programs contain substantial subdivisions in complexity
• Basic blocks and sequences of basic blocks make up functions
• Functions make up modules
• Modules make up programs
• Program execution often takes a circuitous route through all of these

More detail presents further challenges
• Preserving detail at context switches
• Noise is not filtered out as effectively
• Data, bandwidth, memory, compute load increase

Options for extracting sufficient detail
• Long windows might provide enough detail for direct classification
• Short windows could be classified and used as the input to a second-tier classifier

© 2024 Arm

Akira Architecture

8 © 2024 Arm

Akira’s approach
• Local low-power always-on TinyML

• “Listen” for software behaviors
• Enable mitigations / throw alerts when needed
• “Respond” to emerging threats for years

• State of the Art uses standard or
augmented PMU
• Events are aggregated by PMU prior to analysis
• E.x. 34 cache misses and 10 branch mispredicts

since last time sample

• Akira processes Raw Telemetry Events
• E.x. 1 [new] cache miss @ cycle: 5678

Sample Window
of HW Events

over time

Pr
ed

ic
te

d
SW

Be

ha
vi

or
s

9 © 2024 Arm

Akira Architecture: Tiered approach
On-SoC: The blocks

Telemetry and Mitigations highly privileged blocks!
• Careful to protect a high-resolution side channel

Local Security Monitoring Unit (SMU)
• On or near core
• Custom feature extraction accelerator HW
• Need access to a secure ML Accelerator

Updateable with lifecycle
• Triggers basic mitigations if confidence high enough
• Emits alerts + feature summarizations

Benign features sampled at random

System SMU
• Aggregates across local SMUs, while maintaining temporal

consistency
• Correlates samples w/ system context and known patterns

to estimate
1) what samples are “linked” or related
2) and to what behaviors

• Proposes course of action (or not)

10 © 2024 Arm

Temporal Ordering

Raw telemetry events
• More detail for analysis
• Departure from established practice
• CPU designer needs to implement

Impact on non-determinism
• Multi-issue, superscalar reordering, speculative

execution produce noise

Impact on bandwidth
• Counters: 𝑚 log! 𝑛 bits/window
• Event trace: 𝑚𝑛 bits/window

A transform may help
• Path Signatures [Chen 1958, Chevyrev 2016]

Good properties. Resistant to:
§ Offsets
§ Timing variation
§ Warping
§ reparameterization

• Bandwidth: ∑"#$% 𝑖𝑚" log! 𝑛 bits/window
More bandwidth than counters, less than trace
dependent on
§ event sources 𝑚
§ window size 𝑛
§ signature depth 𝐿

𝑆(𝑋)!,#
$!,…,$" = ∫!&#"&#⋯∫!&#!&## 𝑑𝑋#!

$!⋯𝑑𝑋#"
$"

𝑆(𝑋)!,' = 1, 𝑆 𝑋 !,'
(, … , 𝑆 𝑋 !,'

*	 , 𝑆 𝑋 !,'
(,(, 𝑆 𝑋 !,'

(,+	, …

11 © 2024 Arm

Akira’s approach: Compress instead of aggregate
• A limited set of events routed into a feature extraction accelerator
• Accelerator for 5 event sources has negligible area cost
• 5 event sources generates a 55-element vector (log signature)

12 © 2024 Arm

A path signature accelerator
Event trace

/5 !𝑥 𝑥⨂𝑦 !𝑥 𝑥⨂𝑦 !𝑥

𝑥 𝑥

𝐿$ 𝐿! 𝐿&

/5 /5

/10*5 /10*25 /19*25 /19*125

𝑥⨂𝑦

/28*125/19*25/10*5

𝑦!𝑥!
𝑦!𝑥"
⋮

𝑦!𝑥#
𝑦"𝑥!
⋮

𝑦$𝑥#

Combinatorial elements

Sequential elements
𝑥⨂𝑦 can be implemented by
gating each element of 𝑦 on each
element of 𝑥, forming an outer
product

Parameters for:
𝑑 = 5	𝑒𝑣𝑒𝑛𝑡	𝑡𝑦𝑝𝑒𝑠

𝑛 = 1024	𝑒𝑣𝑒𝑛𝑡𝑠/𝑤𝑖𝑛𝑑𝑜𝑤

© 2024 Arm

Experimental
Methodology
& Early Results

Early answers about early warnings

© 2024 Arm

Data collection setup

15 © 2024 Arm

Akira Simulation Infrastructure

Trace
DB

RootFS

Workloads

Trace
Capture
System

16 © 2024 Arm

Akira: The Data

Trace Capture
Goal – Know exactly when and where things run

Modified Gem5 instances
• Direct PMU event capture in CPU
• OS PIDs pushed to CPU regs
• Magic NOPs for marking windows
• Running bare metal + booting Linux
• Capturing PC trace for labelling

Workloads (More on this later)

Stress-NG Linux Testing Project
Juliet IARPA StoneSoup (SSL)
SpectreV1 SPEC 2017

Window begin Window end

PID: 61, stress-ng
parent

PID: 62, stress-ng instance
PID: 61, stress-ng

parent

PC Trace

© 2024 Arm

Identifying programs

18 © 2024 Arm

Interim Results – Program Identification
gzip vs bzip2

Trained on gzip, bzip2 of wav file
Tested on tar -z, tar -j of text file
Model:
• XGBoost
• Path Signature feature extraction
• Long windows (512)

© 2024 Arm

Linux kernel behavior
identification

20 © 2024 Arm

Interim Results – Kernel Function Identification
Classifying kernel behavior by PMU events

Ran long-running Linux Testing Project test cases
Filtered via Exception Level
Matched PC Trace to kernel functions
• 84 behaviors used often enough to be relevant

Ranked possible classes of test sample (25-event windows, XGBoost, path signatures)
Accuracy
• 97.5% top-1
• 99% top-4

'LTP_fcntl27_06-07-2023_204644'

21 © 2024 Arm

LRAP: Label Ranking Average Precision
Evaluating Akira’s multi-label ranking behavior

Rank samples by most likely behavior “class”
Identify how many false classes are ranked below ground truth for each sample
Average these results across all samples for a given test
May be multiple ground truths for some samples
• i.e. One sample window == mix of software "behaviors"
• For better score all the ground truths in a sample should be nearer the top rank

Practical implications:
• Real-world classifier will consume top-N ranked classes for each sample and perform disambiguation.

22 © 2024 Arm

Interim Results – Kernel Function ID
Can we go deeper?

Q: Can we identify specific code paths in
software using telemetry?
• We can distinguish between 1372 kernel

functions with >85% "accuracy" using samples
only 25 events long

10!

10"

10#

23 © 2024 Arm

Interim Results – Generalizing Kernel Function ID
How well does training on one trace generalize to other traces?

Training:
o Ingest sampled form of one large trace (v4.7.1)

§ Treat as a lower bound on model performance
o Target extremely small models and learn 2 rank

§ 25-event windows, path signatures, XGBoost
o See if we can correctly identify top ~60 kernel

functions

Testing:
oHow well does this model work on all other

traces (v5.12.2)?
§ Hint: it's very good

© 2024 Arm

Userspace code
identification

25 © 2024 Arm

Results – User space code classification
Does the kernel-space classification system work on user-space code?

Top 20 user-space labels in the 969 LTP
traces
Training:
• Windows containing target set labels for at

least 25% of duration
• No “unknown” labels
• 25-event windows, path signatures, XGBoost

Testing:
• holdout set
• LRAPS is 97.2%, per window
• RMSE is 8.7%, per window

© 2024 Arm

General behavior
identification

27 © 2024 Arm

Distinguishing between code segments
Using a transformer to identify code based on behavior

Transformer is trained on 1.2M samples
with the top 200 classes highlighted
• 969 traces are sampled, with a training set and

a holdout set

Sources of misclassification:
• Each sample labelled with top-1
• All classes not in the top 200 are binned into

class 0
• Most confusion occurs when the model

predicts class 0 (the catchall class)

Avenues for improvement:
• Top-n labelling
• More classes (fewer in catchall)

Predicted
Tr

ue

28 © 2024 Arm

Distinguishing between code segments
Confusion matrix in log-scale

Most incorrect predictions < 1:10
Clear bias towards more common classes
Misprediction rate improves substantially
below class 10
Avenues for improvement:
• Improve sampling balance

Predicted
Tr

ue

© 2024 Arm

Handling imbalance

30 © 2024 Arm

Two Tower Candidate Generator
One Tower encodes the
measurements
Other Tower encodes our
knowledge of this record
Model pairwise trained
• “Sample related to Record”

True validation is maximum inner
product search
• Expensive, but for science!

In practice, inference leverages
vector DBs
Can add info to input vectors for
cheap

31 © 2024 Arm

Two Towers (cont.)
Training scales well to massive datasets
Models are extremely flexible
• Depending on data concatenated to input vectors we can handle different tasks
• Missing sections can just be zeroed out
• e.x. embedding encoded basic blocks -> identify/group data dependent behaviors
• e.x. embedding local graph of basic blocks -> guide model towards ontologies

§ Similar to playlist learning
• e.x. embedding doc strings for known benign code bases
• e.x. embedding description metadata for known malicious samples (think VirusTotal)
• e.x. embedding syscall trace

Well suited for both cloud and system-level applications
Currently in-progress
• Sorting out details in the training

© 2024 Arm

Second tier classification

33 © 2024 Arm

Goal: use cluster transitions to identify software
1. Mini-batch k-means: Unsupervised labeling of all important clusters across LTP (and beyond)
2. A Trace is then a path (a ‘string’) between these clusters
3. We have efficiently applied this to the entire LTP data set (takes ~1 minute)
4. The resulting output has allowed us to classify program types in the LTP data set with good accuracy

(75% top-1 accuracy on 12 classes, using fully unsupervised features)

A

B

C

D

“ABCDD”

E

1 1 1 2 0

A B C D E

Trace i:
String representation

Freq representation

0 1 0 0 0

A B C D E

A
B
C
D
E

0 0 1 0 0
0 0 0 1 0
0 0 0 2 0
0 0 0 0 0

Transition freq representation

Creates a graph structure:
Can analyze with GNN, TDA

Creates a Term-Frequency structure:
Can analyze with Topic Models

34 © 2024 Arm

Graph Autoencoder on Soft-Label Adjacency Matrix

0 1 0 0 0

A B C D E

A
B
C
D
E

0 0 1 0 0
0 0 0 1 0
0 0 0 2 0
0 0 0 0 0

Transition freq representation

Points are colored temporally (window ID)
We can identify coarser phases within a trace

Variational Graph Autoencoder

© 2024 Arm

Conclusions
& Future work

36 © 2024 Arm

Challenges
Deployment of a high resolution performance monitor requires action by CPU designers
• CPU designers need strong evidence for adding a feature like this
• Providing evidence for this feature requires extensive data collection

Data collection without dedicated hardware can only be done in simulation
• Collecting data in simulation is very slow
• Running malicious software in simulation presents unique challenges

37 © 2024 Arm

Conclusions
The PMU provides high resolution data about software
• As long as we keep ordering information

Event information can be used to identify software
Path signatures retain ordering information, but reduce data size
Path signatures are low overhead in hardware
Event traces can identify short behaviors with high confidence
Sequences of short behaviors can provide identification “strings”

© 2024 Arm

References

39 © 2024 Arm

References
Chevyrev, Ilya & Kormilitzin, Andrey. (2016). A Primer on the Signature Method in
Machine Learning.
Chen, K. T. (1958). Integration of paths--A faithful representation of paths by
noncommutative formal power series. Transactions of the American Mathematical
Society, 89(2), 395-407.
Das, S., Werner, J., Antonakakis, M., Polychronakis, M., & Monrose, F. (2019, May). Sok:
The challenges, pitfalls, and perils of using hardware performance counters for security.
In 2019 IEEE Symposium on Security and Privacy (SP) (pp. 20-38). IEEE.

40 © 2024 Arm

Acknowledgements
This material is based on work supported in part by the Office of the Director of
National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA)
under agreement number W911NF20C0045.

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
ध"यवाद

Kiitos
ارًكش

ধন#বাদ
הדות

ధన#$ాదమ(ల*
© 2024 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2024 Arm

