

FHE for hardware, hardware for FHE and beyond!

Anisha Mukherjee

IAIK, Graz University of Technology, Austria

> www.tugraz.at

SCIENCE PASSION TECHNOLOGY

September 4, 2024

San San San

- HW and design for homomorphic encryption
- Post-quantum cryptographic schemes
- Zero-knowledge proofs

FHE-HW, HW-FHE and beyond

Outline

LIAIK

2

Background and Motivation

- Homomorphic Encryption (HE)
- Ring-LWE based HE and challenges
- FHE-HW: Hardware acceleration for HE
 - FNTT: Fermat's Number Technique for NTT
 - REED: Chiplet-based hardware accelerator \bigcirc
- HW-FHE: HE for hardware reusability
 - ModHE: Module-LWE based HE scheme

• Beyond HE

- Hybrid Homomorphic Encryption (HHE)
- SASTA: Fault attack on HHE

FHE-HW, HW-FHE and beyond

Outline

LIAIK

3

• Background and Motivation

- Homomorphic Encryption (HE)
- Ring-LWE based HE and challenges
- FHE-HW: Hardware acceleration for HE
 - FNTT: Fermat's Number Technique for NTT \bigcirc
 - REED: Chiplet-based hardware accelerator
- HW-FHE: HE for hardware reusability
 - ModHE: Module-LWE based HE scheme
- Beyond HE
 - Hybrid Homomorphic Encryption (HHE)
 - SASTA: Fault attack on HHE

HE

Homomorphic Encryption (HE): Brief introduction

- Allows functional evaluation on encrypted data
- Preserves privacy of data owners

HE

Homomorphic Encryption (HE): Brief introduction

LWE/RLWE/TLWE

FHE-HW, HW-FHE and beyond

Outline

LIAIK

7

Background and Motivation

- Homomorphic Encryption (HE)
- Ring-LWE based HE and challenges
- FHE-HW: Hardware acceleration for HE
 - FNTT: Fermat's Number Technique for NTT \bigcirc
 - REED: Chiplet-based hardware accelerator \bigcirc
- HW-FHE: HE for hardware reusability
 - ModHE: Module-LWE based HE scheme
- Beyond HE
 - Hybrid Homomorphic Encryption (HHE)
 - SASTA: Fault attack on HHE

Anisha Mukherjee, IAIK, TU Graz

$a(x) \cdot \underline{s(x)} + e(x) = b(x) \pmod{q} \pmod{f(x)}$ $b(x) \in \mathcal{R}_q$

$$\begin{array}{l} \mathscr{R}_{q} = \mathbb{Z}_{q}[X] / < f(x) > \\ f(x) = x^{N} + 1 \\ \text{Eg:} (N = 2^{14}, \ \log q = 411) \end{array}$$

$$< \text{ct}, s > = c_0 + c_1 \cdot s$$

HE.Dec

$$\begin{aligned} \operatorname{ct} &= (c_0, c_1) \in \mathscr{R}_q \times \mathscr{R}_q \\ & f(\cdot) \bigcup \operatorname{Eval}(m + m', m \cdot m') \\ & \operatorname{ct}_{\mathrm{add}} = \operatorname{ct} + \operatorname{ct}' \in \mathscr{R}_q \times \mathscr{R}_q \\ & \operatorname{ct}_{\mathrm{mult}} = \operatorname{ct} \times \operatorname{ct}' \in \mathscr{R}_q^3 \end{aligned}$$

RLWE-HE

RLWE meets HE: Security and parameter selection

RLWE-HE

RLWE meets HE: Security and parameter selection

Anisha Mukherjee, IAIK, TU Graz

n	security level	logq
1024	128	25
	192	17
	256	13
2048	128	51
	192	35
	256	27
4096	128	101
	192	70
	256	54
8192	128	202
	192	141
	256	109
16384	128	411
	192	284
	256	220
32768	128	827

From: http://homomorphicencryption.org

HE

What's the catch?

- HE schemes are computationally intensive
- Usually incur an overhead of $10^4 10^5 \times compared$ to plaintext comp.

FHE-HW

- Many (large) polynomial arithmetic operations Large degree polynomial arithmetic Long integer arithmetic
- Memory management Large ciphertext and key sizes \bigcirc Limited on-chip memory

FHE-HW

Many (large) polynomial arithmetic operations Large degree polynomial arithmetic Long integer arithmetic

Memory management Large ciphertext and key sizes Limited on-chip memory

Anisha Mukherjee, IAIK, TU Graz

NTT : Number Theoretic Transform

FHE-HW

Many (large) polynomial ari Large degree polynomial Long integer arithmetic

 Memory management Large ciphertext and key sizes Limited on-chip memory

FHE-HW

Many (large) polynomial arithmetic operations Large degree polynomial arithmetic Long integer arithmetic

Memory management Large ciphertext and key sizes Limited on-chip memory

FHE-HW

- Many (large) polynomial arithmetic operations
 - NTT/INTT transformation involves modular add, subtract, mult
 - NTT/INTT transformation needs to support multiple RNS moduli
 - FHE requires many such NTT/INTT transformations

Anisha Mukherjee, IAIK, TU Graz

li

FHE-HW

Many (large) polynomial arithmetic op

NTT/INTT transformation involve

NTT/INTT transformation needs to supp

Can we make modular multiplications in NTT/INTT units extremely cheap?

FHE-HW, HW-FHE and beyond

Outline

LIAIK

21

Background and Motivation

Homomorphic Encryption (HE)

- Ring-LWE based HE and challenges
- FHE-HW: Hardware acceleration for HE
 - FNTT: Fermat's Number Technique for NTT \bigcirc
 - REED: Chiplet-based hardware accelerator
- HW-FHE: HE for hardware reusability
 - ModHE: Module-LWE based HE scheme
- Beyond HE
 - Hybrid Homomorphic Encryption (HHE)
 - SASTA: Fault attack on HHE

FHE-FNTT

Approach: The Fermat Number Technique

• Fermat number, $P = 2^{K} + 1$ as auxiliary modulus

FHE-FNTT

23

Advantages of the Fermat Number Technique

• Fermat number, $P = 2^{K} + 1$ as auxiliary modulus

NTT: Modular multiplications

Anisha Mukherjee, IAIK, TU Graz

FNTT: Simple shift operations

LIAIK

24

Advantages and challenges

- Multiplier-less NTT using Fermat number
- \checkmark Roots of unity are powers of two \implies no storage required
- \checkmark We* achieve 1,200 × speed-up compared to software implementations
- O Requires more number of computations

*Andrey Kim, Ahmet Can Mert, Anisha Mukherjee, Aikata Aikata, Maxim Deryabin, Sunmin Kwon, HyungChul Kang, and Sujoy Sinha Roy. Exploring the advantages and challenges of Fermat NTT in FHE acceleration. CRYPTO, 2024.

FHE-HW, HW-FHE and beyond

Outline

LIAIK

25

Background and Motivation

- Homomorphic Encryption (HE)
- Ring-LWE based HE and challenges
- FHE-HW: Hardware acceleration for HE
 - FNTT: Fermat's Number Technique for NTT \bigcirc
 - REED: Chiplet-based hardware accelerator \bigcirc
- HW-FHE: HE for hardware reusability
 - ModHE: Module-LWE based HE scheme
- Beyond HE
 - Hybrid Homomorphic Encryption (HHE)
 - SASTA: Fault attack on HHE

FHE-HW

• Many (large) polynomial arithmetic operations Large degree polynomial arithmetic Long integer arithmetic

• Memory management Large ciphertext and key sizes \bigcirc Limited on-chip memory

FHE-HW

Challenges with FHE-HW acceleration

FHE-HW

Problem: FHE is slow

New problemsiphertexts, Keys,

O Large area decreases yield

• High manufacturing costs (16M US\$ or more)

• Difficult pre-silicon testing and verification

FHE-HW

Challenges with FHE-HW acceleration Problem: FHE is slow

Solution: Design very large parallel accelerator

New problems:

• Large area decreases yield

• High manufacturing costs

• Difficult pre-silicon testing and verification

Anisha Mukherjee, IAIK, TU Graz

*Picture credits: Tenor

FHE-REED

Approach: Chiplet integration

• Split a big design into multiple dies called 'chiplets'

Dies are 2.5D or 3D 'packaged'

FHE-REED

Chiplet-based FHE processor: REED*

Side and top view-2.5D REED

*Aikata Aikata, Ahmet Can Mert, Sunmin Kwon, Maxim Deryabin, and Sujoy Sinha Roy. REED: Chiplet-based accelerator for fully homomorphic encryption. https://eprint.iacr.org/2023/1190.

Advantages and challenges of a chiplet-based design

- Higher yield
- Smaller and simpler chiplets
- Manufacturing feasibility
- O Slow chiplet-to-chiplet (C2C) communication
- O Optimal balance between area and number of chiplets is crucial

FHE-FNTT LIAIK 33

Overcoming the challenges

- ✓ No performance penalty
- Linear interconnection complexity

Anisha Mukherjee, IAIK, TU Graz

Algrithmic tweaks to develop a ring-based FHE C2C protocol

ASIC designs such as REED's chiplet system could bring FHE calculations within 10x latency compared to plaintext calculations.

FHE-HW, HW-FHE and beyond

Outline

LIAIK

34

• Background and Motivation

Homomorphic Encryption (HE)

- Ring-LWE based HE and challenges
- FHE-HW: Hardware acceleration for HE

FNTT: Fermat's Number Technique for NTT \bigcirc

- REED: Chiplet-based hardware accelerator
- HW-FHE: HE for hardware reusability ModHE: Module-LWE based HE scheme
- Beyond HE
 - Hybrid Homomorphic Encryption (HHE)
 - SASTA: Fault attack on HHE

HW-FHE

Challenges with FHE-HW acceleration

Many (large) polynomial arithmetic operations Large degree polynomial arithmetic Long integer arithmetic

Challenges with FHE-HW acceleration

Many (large) polynomial arithmetic operations Large degree polynomial arithmetic Long integer arithmetic

Can we design an HE scheme that allows the same hardware to support multiple (N, q)?

Module-LWE (MLWE) meets HE

$$\begin{array}{c} \text{Module} \quad \begin{bmatrix} a_{00}(x) & a_{01}(x) \\ a_{10}(x) & a_{11}(x) \end{bmatrix} \cdot \begin{bmatrix} s_0(x) \\ s_1(x) \end{bmatrix} + \begin{bmatrix} e_0(x) \\ e_1(x) \end{bmatrix} = \begin{bmatrix} b_0(x) \\ b_1(x) \end{bmatrix} \pmod{q} \pmod{q} \pmod{q}$$

$$\begin{array}{c} \downarrow \\ \downarrow \\ \hline b_i(x) \in \mathscr{R}_q(2^{13}) \end{bmatrix}$$

$$\begin{array}{c} (N = 2^{14} = 2 \cdot 2^{13} = n \cdot r) \end{bmatrix}$$

Module-LWE (MLWE) meets HE

• Flexible parameters: Fix a ring degree (*n*) and vary the rank (*r*)

Module-LWE (MLWE) meets HE: ModHE*

• Flexible parameters: Fix a ring degree (n) and vary the rank (r)

Arithmetic on smaller and fixed degree (n) polynomials)

*Anisha Mukherjee, Aikata, Ahmet Can Mert, Yongwoo Lee, Sunmin Kwon, Maxim Deryabin, and Sujoy Sinha Roy. Modhe: Modular homomorphic encryption using module lattices potentials and limitations. TCHES, 2024(1)

LIAIK

42

ModHE: Potentials and limitations

- Better security assumptions
- Mardware reusability and more scope for optimization
- Increased scope of parallel computations
- Ciphertext compression due to rank reduction
- O Limitations: Increased key sizes, more precision loss

FHE-HW, HW-FHE and beyond

Outline

LIAIK

43

Background and Motivation

Homomorphic Encryption (HE)

- Ring-LWE based HE and challenges
- FHE-HW: Hardware acceleration for HE
 - FNTT: Fermat's Number Technique for NTT \bigcirc
 - REED: Chiplet-based hardware accelerator
- HW-FHE: HE for hardware reusability ModHE: Module-LWE based HE scheme

• Beyond HE

Hybrid Homomorphic Encryption (HHE) SASTA: Fault attack on HHE

$$\begin{split} \texttt{ct} &= (c_0, c_1) \in \mathscr{R}_q \times \mathscr{R}_q \\ & f(\cdot) \bigcup \texttt{Eval}(m + m', m \cdot m') \\ \texttt{ct}_{add} &= \texttt{ct} + \texttt{ct}' \in \mathscr{R}_q \times \mathscr{R}_q \\ \texttt{ct}_{mult} &= \texttt{ct} \times \texttt{ct}' \in \mathscr{R}_q^3 \\ \texttt{SERVER} \end{split}$$

$$ct = (c_0, c_1) \in \mathscr{R}_q \times \mathscr{R}_q$$

Huge ciphertext expansion
e.g., 7.4MB for ≤ 250 kB
Ctado
 $q \sim \mathscr{R}_q$
 $ct_{mult} = ct \times ct' \in \mathscr{R}_q^3$

$$< ct, s > = c_0 + c_1 \cdot s$$

Approach: Hybrid Homomorphic Encryption (HHE)

- Clients encrypts data symmetrically
 - No ciphertext expansion
- Server does more computations

Anisha Mukherjee, IAIK, TU Graz

Extra homomorphic decryption of symmetric circuit before eval

Approach: Hybrid Homomorphic Encryption (HHE)

- Clients encrypts data symmetrically
 - No ciphertext expansion
- Server does more computations

Anisha Mukherjee, IAIK, TU Graz

Extra homomorphic decryption of symmetric circuit before eval

FHE-HW, HW-FHE and beyond

Outline

LIAIK

49

Background and Motivation

Homomorphic Encryption (HE)

- Ring-LWE based HE and challenges
- FHE-HW: Hardware acceleration for HE
 - FNTT: Fermat's Number Technique for NTT \bigcirc
 - REED: Chiplet-based hardware accelerator
- HW-FHE: HE for hardware reusability
 - ModHE: Module-LWE based HE scheme

• Beyond HE

- Hybrid Homomorphic Encryption (HHE)
- SASTA: Fault attack on HHE

HHE: Beyond theoretical security

• SASTA* introduces a novel fault attack on the SE.Enc step

*Aikata Aikata, Ahaan Dabholkar, Dhiman Saha, and Sujoy Sinha Roy. **SASTA: Ambushing hybrid homomorphic encryption** schemes with a single fault. https://eprint.iacr.org/2024/041.

**Picture credits: ClipArts

LIAIK

52

Differential = Faulty ciphertext – Faultfree ciphertext = ct' - ct= (m + SE.Enc(l)) $\Delta E = SE.Enc - SE'.Enc$

$$K_{SE}(n)) - (m + SE'.Enc(K_{SE}(n)))$$

SASTA: Features and limitations

- Single fault at identified Fault Injection Points (FIPs)
- Single pair of faulty and fault-free ct required for key-recovery
- Demonstrated success for many HHE ciphers
- O Attack success dependent on complexity of evaluation function

HW-FHE, FHE-HW & Beyond

Conclusion: Key-takeaways

- Homomorphic Encryption provides data privacy in untrusted environments
- Suffers from large computational overhead
- Interesting scopes in new hardware/computation paradigms & scheme design
- Interesting scopes for in-depth cryptanalysis

FHE for hardware, hardware for FHE and beyond!

Anisha Mukherjee

IAIK, Graz University of Technology, Austria

> www.tugraz.at

SCIENCE PASSION TECHNOLOGY

September 4, 2024

San San San

