

FHE for hardware, hardware for FHE and beyond!

Anisha Mukherjee

IAIK, Graz University of Technology, Austria

> www.tugraz.at

SCIENCE PASSION TECHNOLOGY

September 4, 2024

THE R. P.

- ***** HW and design for homomorphic encryption
- ***** Post-quantum cryptographic schemes
- ***** Zero-knowledge proofs

HAIK

FHE-HW, HW-FHE and beyond

Outline

• Background and Motivation

- Homomorphic Encryption (HE)
- Ring-LWE based HE and challenges
- **• FHE-HW: Hardware acceleration for HE**
	- FNTT: Fermat's Number Technique for NTT
	- REED: Chiplet-based hardware accelerator
- **• HW-FHE: HE for hardware reusability**
	- ModHE: Module-LWE based HE scheme

• Beyond HE

- Hybrid Homomorphic Encryption (HHE)
- SASTA: Fault attack on HHE

TAIK

FHE-HW, HW-FHE and beyond

Outline

• Background and Motivation

- Homomorphic Encryption (HE)
- Ring-LWE based HE and challenges
- **• FHE-HW: Hardware acceleration for HE**
	- FNTT: Fermat's Number Technique for NTT \bigcirc
	- REED: Chiplet-based hardware accelerator
- **• HW-FHE: HE for hardware reusability**
	- ModHE: Module-LWE based HE scheme
- **• Beyond HE**
	- Hybrid Homomorphic Encryption (HHE)
	- SASTA: Fault attack on HHE

HE

Homomorphic Encryption (HE): Brief introduction

- Allows functional evaluation on encrypted data
- Preserves privacy of data owners

HE

Homomorphic Encryption (HE): Brief introduction

LWE/RLWE/TLWE

HAIK

FHE-HW, HW-FHE and beyond

Outline

• Background and Motivation

- Θ **Homomorphic Encryption (HE)**
- Ring-LWE based HE and challenges
- **• FHE-HW: Hardware acceleration for HE**
	- FNTT: Fermat's Number Technique for NTT \bigcirc
	- REED: Chiplet-based hardware accelerator \bigcirc
- **• HW-FHE: HE for hardware reusability**
	- ModHE: Module-LWE based HE scheme
- **• Beyond HE**
	- Hybrid Homomorphic Encryption (HHE)
	- SASTA: Fault attack on HHE

$b(x) \in \mathcal{R}_q$ \mathscr{R}_q $a(x) \cdot s(x) + e(x) = b(x) \pmod{q} \pmod{f(x)}$

$$
\mathcal{R}_q = \mathbb{Z}_q[X] /
$$

$$
f(x) = x^N + 1
$$

Eg: $(N = 2^{14}, \log q = 411)$

$$
\begin{array}{c}\n\hline\n\text{HE. Enc}\n\end{array}\n\quad\n\begin{aligned}\n\text{ct} &= (c_0, c_1) \in \mathcal{R}_q \times \mathcal{R}_q \\
f(\cdot) & \text{Eval}(m + m', m, m')\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{ct} &= \text{ct} + \text{ct}' \in \mathcal{R}_q \times \mathcal{R}_q \\
\text{ct} &= \text{ct} + \text{ct}' \in \mathcal{R}_q \times \mathcal{R}_q \\
\text{ct} &= \text{ct} \times \text{ct}' \in \mathcal{R}_q^3\n\end{aligned}
$$

RLWE-HE

RLWE meets HE: Security and parameter selection

RLWE-HE

RLWE meets HE: Security and parameter selection

HE

- HE schemes are computationally intensive
- Usually incur an overhead of $10^4 10^5$ × compared to plaintext comp.

Anisha Mukherjee, IAIK, TU Graz

What's the catch?

FHE-HW

- Many (large) polynomial arithmetic operations Large degree polynomial arithmetic Long integer arithmetic
- Memory management Large ciphertext and key sizes \bigcirc Limited on-chip memory

FHE-HW

• Many (large) polynomial arithmetic operations Large degree polynomial arithmetic Long integer arithmetic

• Memory management Large ciphertext and key sizes Limited on-chip memory

Anisha Mukherjee, IAIK, TU Graz

NTT : Number Theoretic Transform

FHE-HW

• Many (large) polynomial arj e Large degree polynombal Long integer arithmetic

• Memory management Large ciphertext and key sizes Limited on-chip memory

FHE-HW

• Many (large) polynomial arithmetic operations Large degree polynomial arithmetic Long integer arithmetic

• Memory management Large ciphertext and key sizes Limited on-chip memory

FHE-HW

- Many (large) polynomial arithmetic operations
	- NTT/INTT transformation involves modular add, subtract, mult
	- NTT/INTT transformation needs to support multiple RNS moduli
	- FHE requires many such NTT/INTT transformations

FHE-HW

• Many (large) polynomial arithmetic ope

 \odot NTT/INTT transformation involves

 \circ NTT/INTT transformation needs to support

Can we make modular multiplications in NTT/INTT units extremely cheap ?

TAIK

FHE-HW, HW-FHE and beyond

Outline

• Background and Motivation

 Θ **Homomorphic Encryption (HE)**

Ring-LWE based HE and challenges

- **• FHE-HW: Hardware acceleration for HE**
	- FNTT: Fermat's Number Technique for NTT
	- REED: Chiplet-based hardware accelerator \bigcirc
- **• HW-FHE: HE for hardware reusability**
	- ModHE: Module-LWE based HE scheme
- **• Beyond HE**
	- Hybrid Homomorphic Encryption (HHE)
	- SASTA: Fault attack on HHE

FHE-FNTT

Approach: The Fermat Number Technique

• Fermat number, $P = 2^K + 1$ as auxiliary modulus

HAIK

FHE-FNTT

Advantages of the Fermat Number Technique

• Fermat number, $P = 2^K + 1$ as auxiliary modulus

Anisha Mukherjee, IAIK, TU Graz

NTT: Modular multiplications **FINTT:** Simple shift operations

HAIK

- Multiplier-less NTT using Fermat number
- Roots of unity are powers of two \Longrightarrow no storage required
- \mathbb{F} We* achieve 1,200 \times speed-up compared to software implementations
- o Requires more number of computations

Advantages and challenges

*Andrey Kim, Ahmet Can Mert, Anisha Mukherjee, Aikata Aikata, Maxim Deryabin, Sunmin Kwon, HyungChul Kang, and Sujoy Sinha *Roy*. **Exploring the advantages and challenges of Fermat NTT in FHE acceleration***.* CRYPTO, 2024.

TAIK

FHE-HW, HW-FHE and beyond

Outline

• Background and Motivation

 Θ **Homomorphic Encryption (HE)**

- Ring-LWE based HE and challenges
- **• FHE-HW: Hardware acceleration for HE**
	- FNTT: Fermat's Number Technique for NTT \bigcirc
	- REED: Chiplet-based hardware accelerator \bigcirc
- **• HW-FHE: HE for hardware reusability**
	- ModHE: Module-LWE based HE scheme
- **• Beyond HE**
	- Hybrid Homomorphic Encryption (HHE)
	- SASTA: Fault attack on HHE

FHE-HW

- Many (large) polynomial arithmetic operations Large degree polynomial arithmetic Long integer arithmetic
- Memory management Large ciphertext and key sizes \bigcirc Limited on-chip memory

FHE-HW

Challenges with FHE-HW acceleration

FHE-HW

Problem: FHE is slow

New problemsiphertexts, Keys,

o Large area decreases yield

System-level view Difficult pre-silicon testing and verification

Anisha Mukherjee, IAIK, TU Graz

High manufacturing costs (16M US\$ or more)

FHE-HW

Challenges with FHE-HW acceleration Problem: FHE is slow

Solution: Design very large parallel accelerator

New problems:

Large area decreases yield

O High manufacturing costs

Difficult pre-silicon testing and verification

Anisha Mukherjee, IAIK, TU Graz

**Picture credits: Tenor

FHE-REED

Approach: Chiplet integration

• Split a big design into multiple dies called 'chiplets'

Dies are 2.5D or 3D 'packaged'

-
-

FHE-REED

Chiplet-based FHE processor: REED*

Side and top view-2.5D REED

*Aikata Aikata, Ahmet Can Mert, Sunmin Kwon, Maxim Deryabin, and Sujoy Sinha Roy. REED: Chiplet-based accelerator for fully **homomorphic encryption***. https://eprint.iacr.org/2023/1190.*

Advantages and challenges of a chiplet-based design

- **M** Higher yield
- Smaller and simpler chiplets
- Manufacturing feasibility
- Slow chiplet-to-chiplet (C2C) communication
- Optimal balance between area and number of chiplets is crucial

FHE-FNTT LLAIK 33

-
- No performance penalty
- **M** Linear interconnection complexity

Anisha Mukherjee, IAIK, TU Graz

Algrithmic tweaks to develop a ring-based FHE C2C protocol

ASIC designs such as REED's chiplet system could bring FHE calculations within 10x latency compared to plaintext calculations.

Overcoming the challenges

TAIK

FHE-HW, HW-FHE and beyond

Outline

• Background and Motivation

 Θ **Homomorphic Encryption (HE)**

FNTT: Fermat's Number Technique for NTT \bigcirc

Ring-LWE based HE and challenges

• FHE-HW: Hardware acceleration for HE

REED: Chiplet-based hardware accelerator

• HW-FHE: HE for hardware reusability ModHE: Module-LWE based HE scheme

• Beyond HE

Hybrid Homomorphic Encryption (HHE)

SASTA: Fault attack on HHE

-
-
-
-
-
-
-

Challenges with FHE-HW acceleration

• Many (large) polynomial arithmetic operations Large degree polynomial arithmetic Long integer arithmetic

Challenges with FHE-HW acceleration

• Many (large) polynomial arithmetic operations Large degree polynomial arithmetic Long integer arithmetic

Can we design an HE scheme that allows the same hardware to support multiple (*N*, *q*)**?**

Module-LWE (MLWE) meets HE

$$
\begin{aligned}\n\boxed{\text{Module}} \begin{bmatrix}\na_{00}(x) & a_{01}(x) \\
a_{10}(x) & a_{11}(x)\n\end{bmatrix} \cdot\n\begin{bmatrix}\ns_0(x) \\
s_1(x)\n\end{bmatrix} +\n\begin{bmatrix}\ne_0(x) \\
e_1(x)\n\end{bmatrix} =\n\begin{bmatrix}\nb_0(x) \\
b_1(x)\n\end{bmatrix} \quad (\text{mod } q) \quad (\text{mod } f(x)) \\
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \
$$

Module-LWE (MLWE) meets HE

• Flexible parameters: Fix a ring degree (*n*) and vary the rank (*r*)

Module-LWE (MLWE) meets HE: ModHE*

• Flexible parameters: Fix a ring degree (*n*) and vary the rank (*r*)

⟹

Arithmetic on smaller and fixed degree (*n*) polynomials)

*Anisha Mukherjee, Aikata, Ahmet Can Mert, Yongwoo Lee, Sunmin Kwon, Maxim Deryabin, and Sujoy Sinha Roy. Modhe: Modular **homomorphic encryption using module lattices potentials and limitations***. TCHES, 2024(1)*

TAIK

ModHE: Potentials and limitations

- Better security assumptions
- Hardware reusability and more scope for optimization
- Increased scope of parallel computations
- Ciphertext compression due to rank reduction
- Limitations: Increased key sizes, more precision loss

TAIK

FHE-HW, HW-FHE and beyond

Outline

• Background and Motivation

 Θ **Homomorphic Encryption (HE)**

- Ring-LWE based HE and challenges
- **• FHE-HW: Hardware acceleration for HE**
	- FNTT: Fermat's Number Technique for NTT \bigcirc
	- REED: Chiplet-based hardware accelerator
- **• HW-FHE: HE for hardware reusability** ModHE: Module-LWE based HE scheme

• Beyond HE

Hybrid Homomorphic Encryption (HHE) SASTA: Fault attack on HHE

$$
\begin{aligned}\n\text{ct} &= (c_0, c_1) \in \mathcal{R}_q \times \mathcal{R}_q \\
f(\cdot) & \int \text{Eval}(m + m', m \cdot m') \\
\text{ct}_{\text{add}} &= \text{ct} + \text{ct}' \in \mathcal{R}_q \times \mathcal{R}_q \\
\text{ct}_{\text{mult}} &= \text{ct} \times \text{ct}' \in \mathcal{R}_q^3 \\
\text{SERVER}\n\end{aligned}
$$

$$
\begin{array}{c}\n\hline\n\langle ct, s \rangle = c_0 + c_1 \cdot s \\
\hline\n\text{HE.Dec} \\
\hline\n\text{CLIENT}\n\end{array}
$$

⟹ ⁼ (*c*0, *^c*¹ ⟹) ∈ ℛ*^q* × ℛ*^q f*(⋅) Eval(*m* ∈ ∈ Huge ciphertext expansion e.g., 7.4MB for ≤ 250kB

$$
\langle ct, s \rangle = c_0 + c_1 \cdot s
$$

Beyond HE

Approach: Hybrid Homomorphic Encryption (HHE)

- Clients encrypts data symmetrically
	- No ciphertext expansion
- Server does more computations
	-

Anisha Mukherjee, IAIK, TU Graz

Extra homomorphic decryption of symmetric circuit before eval

Beyond HE

Approach: Hybrid Homomorphic Encryption (HHE)

- Clients encrypts data symmetrically
	- No ciphertext expansion
- Server does more computations
	-

Anisha Mukherjee, IAIK, TU Graz

Extra homomorphic decryption of symmetric circuit before eval

HAIK

FHE-HW, HW-FHE and beyond

Outline

• Background and Motivation

 Θ **Homomorphic Encryption (HE)**

FNTT: Fermat's Number Technique for NTT \bigcirc

Ring-LWE based HE and challenges

• FHE-HW: Hardware acceleration for HE

- REED: Chiplet-based hardware accelerator
- **• HW-FHE: HE for hardware reusability** ModHE: Module-LWE based HE scheme

• Beyond HE

Hybrid Homomorphic Encryption (HHE)

● SASTA: Fault attack on HHE

-
-

Beyond HE

HHE: Beyond theoretical security

• SASTA* introduces a novel fault attack on the SE. Enc step

Aikata Aikata, Ahaan Dabholkar, Dhiman Saha, and Sujoy Sinha Roy.* **SASTA: Ambushing hybrid homomorphic encryption schemes with a single fault. *https://eprint.iacr.org/2024/041.*

**Picture credits: ClipArts

HAIK

SASTA: Differential Fault Analysis

 $Differential = Faulty ciphertext - Faultfree ciphertext$

- $=$ ct'
- $=$ $(m + SE, Enc(L))$
- $\Delta E =$ SE.Enc SE'.Enc

$$
K_{SE}, n) \big) - \big(m + SE'.Enc(K_{SE}, n) \big)
$$

Beyond HE

- Single fault at identified Fault Injection Points (FIPs)
- Single pair of faulty and fault-free ct required for key-recovery
- **Ø** Demonstrated success for many HHE ciphers
- Attack success dependent on complexity of evaluation function

Anisha Mukherjee, IAIK, TU Graz

SASTA: Features and limitations

HW-FHE, FHE-HW & Beyond

- Homomorphic Encryption provides data privacy in untrusted environments
- Suffers from large computational overhead
- Interesting scopes in new hardware/computation paradigms & scheme design
- Interesting scopes for in-depth cryptanalysisP

Anisha Mukherjee, IAIK, TU Graz

Conclusion: Key-takeaways

FHE for hardware, hardware for FHE and beyond!

Anisha Mukherjee

IAIK, Graz University of Technology, Austria

> www.tugraz.at

SCIENCE PASSION TECHNOLOGY

September 4, 2024

THE R. P.

