

Learning to Trust DRAM in the Era of Worsening Rowhammer Attacks

Gururaj Saileshwar

Assistant Professor, University of Toronto 4 September, 2024

DRAM Scaling for Increased Capacity

DRAM Scaling for Increased Capacity More Inter-Cell Interference

DRAM Scaling for Increased Capacity More Inter-Cell Interference

DRAM (old)

DRAM Scaling for Increased Capacity More Inter-Cell Interference

Rowhammer Vulnerability is Worsening

Rowhammer Threshold (Number of Activations Needed to Induce Bit-flip) has Dropped by 30X in 8 years from 2014 to 2022

DRAM Generation	Rowhammer Threshold (TRH)
DDR3 (old)	139K ^[1]
DDR3 (new)	22.4K ^[2]
DDR4 (old)	17.5K ^[2]
DDR4 (new)	10K ^[2]
LPDDR4 (old)	16.8K ^[2]
LPDDR4 (new)	4.8K ^[2] -9K ^[3]

Source: [1] - Kim+ (ISCA'14), [2] - Kim+ (ISCA'20), [3] - Kogler+ (SEC'22)

Need Defenses that are Scalable to Dropping Rowhammer Thresholds

In-DRAM Mitigation in DDR4

Targeted Row Refresh (TRR) in DDR4 (2015)

In-DRAM Mitigation in DDR4

Targeted Row Refresh (TRR) in DDR4 (2015)

1 Track Aggressor Rows

In-DRAM Mitigation in DDR4

Challenge-1: In-DRAM Tracking Solutions Broken!

Challenge-1: In-DRAM Tracking Solutions Broken!

Challenge-2: New Attacks on Victim-Focused Mitigation

Challenge-2: New Attacks on Victim-Focused Mitigation

Need New Mitigative Actions to Mitigate Rowhammer

Our Scalable & Practical Defenses Against Rowhammer

for Targets of Rowhammer (Page-Tables)

Agenda

Introduction

New Mitigative Actions for Rowhammer

Randomized Row-Swaps [ASPLOS 2022, HPCA 2023]

Secure In-DRAM Tracking

PrIDE: Probabilistic In-DRAM Tracker [ISCA 2024]

Defense in Depth Solutions

PT-Guard [DSN 2023]

Conclusion

Motivation: Attacks On Victim-Focused Mitigation

Source: ArsTechnica

Motivation: Attacks On Victim-Focused Mitigation

Need New Mitigative Action Resilient to New Attack Patterns (without requiring knowledge of DRAM mapping function) Randomized Row-Swap: Mitigating Row Hammer By Breaking Spatial Correlation Between Aggressor and Victim Rows

ASPLOS 2022, Lausanne, Switzerland

Gururaj Saileshwar, Bolin Wang, Moinuddin Qureshi, Prashant Nair

Aggressor Focused Mitigation: Randomized Row-Swap

TRH=4800 → Minimum Activations in 64ms on Row for Rowhammer via Any Pattern (Single-sided, Double-Sided, Half-Double)

Random

Guess?

Buckets and Balls Problem

Implementation of Randomized Row Swap

Implementation of Randomized Row Swap

RIT Stores Tuples of Swapped Rows \rightarrow RIT + HRT = 45 KB Per DRAM Bank \rightarrow 700KB Per Rank

Performance Impact of Row Swaps

Config: 8-core OOO, 16GB DRAM (1 Rank). Rowhammer Threshold of 4.8K.

Frequency of Row Swaps Per 64ms

(1.5 microseconds per swap)

Negligible Performance Impact

(0.4% slowdown on average)

Performance Impact of Row Swaps

Config: 8-core OOO, 16GB DRAM (1 Rank). Rowhammer Threshold of 4.8K.

Frequency of Row Swaps Per 64ms

(1.5 microseconds per swap)

Negligible Performance Impact

(0.4% slowdown on average)

Randomized Row Swap has negligible performance impact due to infrequent swaps

Takeways from Randomized Row Swap

New Aggressor-Focused Mitigation CPU-side Implementation, compatible with commodity DRAM

Incurs Modest Costs at TRH of 4.8K (0.4% slowdown, 45KB SRAM/bank)

Scalable and Secure Row-Swap: Efficient and Safe Rowhammer Mitigation in Memory Systems

HPCA 2023, Montreal, Canada Best Paper Award

Jeonghyun Woo, Gururaj Saileshwar, Prashant Nair

RRS Security Pitfall: Latent Activations

RRS Security Pitfall: Latent Activations

Juggernaut Attack

Juggernaut Attack

RRS Suffers Vulnerability Due to Unswaps

Unswaps in RRS Required Due to Tracking Complexity

Secure Row Swap

Secure Row-Swap (SRS)

Key Idea: Delay unswaps using two separate tables Unswap Rows Unswap Rows **Unswap Rows** in Epoch 2 in Epoch 3 in Epoch 1 Odd Table Epoch 1 Epoch 2 Epoch 3 Epoch 4 Time Even Table Refresh Refresh Refresh Refresh Refresh Idle Storing General Mapping For Unswap

No Performance Overhead Due to Unswaps

Scalable and Secure Row-Swap

Reduces the Swap Threshold from TRH/6 to TRH/3

Scale-SRS: SRAM Overhead

Overhead Per Bank for TRH = 1K

Row Hammer Threshold	RRS	Scale-SRS
4800	36 KB	18.7 KB
2400	131 KB	44.4 KB
1200	251 KB	76.9 KB

Scale-SRS: Performance

Less than 1% performance overhead

Takeways from Secure Row Swap

Enables a Secure Implementation of a Aggressor-Focused Mitigation

Scalable Solution at TRH of 1K (Less than 1% Slowdown, 70KB SRAM/bank)

Agenda

Introduction

New Mitigative Actions for Rowhammer Randomized Row-Swaps [ASPLOS 2022, HPCA 2023]

Secure In-DRAM Tracking

PrIDE: Probabilistic In-DRAM Tracker [ISCA 2024]

Defense in Depth Solutions

PT-Guard [DSN 2023]

Conclusion

Problem: Commercial In-DRAM Trackers Insecure

PrIDE: Achieving Secure RowHammer Mitigation Using Low Cost In-DRAM Trackers

ISCA 2024

Aamer Jaleel (NVIDIA), Gururaj Saileshwar (Toronto), Steve Keckler (NVIDIA), Moinuddin Qureshi (GT)

Why Do Existing Low Cost In-DRAM Trackers Fail?

Taxonomy of Tracker Management Policies and Failure Modes

Failure from DISCARDING address

Why Do Existing Low Cost In-DRAM Trackers Fail?

Current Trackers Use Counters to Track Frequently Activated Rows

Existing Tracker Policies are Access Pattern Dependent

Carefully Crafted Access Patterns (e.g. TRRespass) Induce Tracker Retention Failures!

Insight: Secure In-DRAM Tracker Requires Access-Pattern Independence

PrIDE = Probabilistic Insertion + Access-Pattern Independent Tracker Management

Bounds Failure Rate

PrIDE = Probabilistic Insertion + Access-Pattern Independent Tracker Management

For a MTTF of 10,000 years, PrIDE can support TRH = 1575 with 16-entry FIFO

Benefits of PrIDE – Secure & Low Cost In-DRAM Tracker

Takeways from PrIDE

FIRST Low-Cost and Secure In-DRAM Defense for Future DRAM

Scalable to TRH of 400 at Negligible Cost (1% Slowdown, 16 Bytes SRAM/bank)

Agenda

Introduction

New Mitigative Actions for Rowhammer Randomized Row-Swaps [ASPLOS 2022, HPCA 2023]

Secure In-DRAM Tracking Solutions PrIDE: Probabilistic In-DRAM Tracker [ISCA 2024]

Defense in Depth Solutions

PT-Guard [DSN 2023]

Conclusion

Be Paranoid: Defenses can be Broken

Privilege Escalation Exploit with Rowhammer

Bit-Flips in page tables enables privilege escalation, breaking system security

PT-Guard: Integrity-Protected Page Tables to Defend Against Breakthrough Rowhammer Attacks

DSN 2023, Spain

Anish Saxena, Gururaj Saileshwar, Jonas Juffinger, Andreas Kogler, Daniel Gruss, Moinuddin Qureshi

Mac-Based Integrity Protection

MAC provides cryptographic integrity protection but has high overheads

Embedding MAC within the PTE cacheline

PT-Guard embeds a 96-bit MAC within the PTE line, obviating storage and access overheads

Evaluation Results

PT-Guard provides integrity for page tables at 1.3% slowdown. PT-Guard also has best-effort correction (corrects about 90% of errors at 0.5% bit error rate)

Agenda

Introduction

New Mitigative Actions for Rowhammer Randomized Row-Swaps [ASPLOS 2022, HPCA 2023]

Secure In-DRAM Tracking PrIDE: Probabilistic In-DRAM Tracker [ISCA 2024]

Defense in Depth Solutions PT-Guard [DSN 2023]

Conclusion

Conclusions

Rowhammer Vulnerability is Becoming Worse!

• New attack patterns likely to emerge as attacker capability increases.

Defenses Need to be Practical & Resilient to Old & New Attacks

- RRS, SRS → New Mitigative Actions focused on Aggressors
- PrIDE → First Secure and Low-Cost In-DRAM Defense
- PTGuard \rightarrow Defense in Depth

Looking Forward: Long Way to Go!

- Explore Threat Landscape on Emerging DRAM (DDR5, HBM, GDDR)
- Make Critical SW Applications (e.g., ML Models) Resilient to Rowhammer
- Address Vulnerability at Low-Cost in Future DRAM (sub-100 thresholds)

Thank you! Questions?

1.11

ta taula da taita de